Novel Photoanode Structures and Its Application in Dye-sansitized Solar Cells

林鼎翔、姚品全

E-mail: 9806480@mail.dyu.edu.tw

ABSTRACT

In this study, sol-gel TiO2 were used as the photo-anodes of the dye-sensitized solar cells(DSSC). The pristine nanocrystalline TiO2, owing to the lack of internal built-in electric filed to swift off charge carriers and suppressing the recombination of photo-generated charge carriers, suffers from extremely low charge carrier density. Therefore, the key role to improve the activity of these photo-anodes is to retard (slow) the recombination of photo-generated charge carriers. Therefore, it is our goal to adapt concept by using a second semiconductor to sensitize the first one to overcome this problem. An efficient charge separation can be obtained by coupling two semiconductors particles. As the result of vectorial transfer of electrons, or inter-particles electron transfer (IPET), keeping the carriers of opposite sign reside on corresponding semiconductors, the recombination of photo-generated charge carriers were thus efficiently suppressed. In this study, the process parameters in fabricating working electrodes had been investigated. Firstly, the finely grinded TiO2 paste was spin-coated on ITO glass w thvarious layers at different speed. The as-deposited films were further annealed at different temperature. Finally, mesoporous TiO2 films with different thickness were obtained. The study found: Nanotechnology porosity by sintering of TiO2 compact structure easy to form thin film electrode, by adding different proportions of the polymers, an increase in the overall surface area, increased the amount of dye adsorption, absorption of visible light help to stimulate electronics, improved effectiveness of the overall conversion. The purpose of this study to look at a variety of different thickness and annealing temperature of TiO2 films produced by the working electrode, the photoelectric conversion efficiency of the impact. The photoanode with 1.55? 慆 in thickness seems to be the best choice of process parameters. Nevertheless, as the thickness of the photoanode is lower than 1.55?慆, the overall surface area as well as the amount of dye adsorption reduced. In addition iiasthe film thickness was over 1.68? 慆, the as-deposited films is vulnerable to cracking during the drying which will deteriorate the film quality and the overall cell performance. In a preliminary study, annealing at 450oC resulted in the best cell performance and was chose for further studies. Novel photoanode structures had been evaluated under simulated standard AM1.5 light source. In the two-tier structure (TCO / TiO2-SnO2 / TiO2 / Dye)decreased slightly at JSC in addition to 0.23 mA/cm2, VOC, FF, ? are rising. In the three-tier structure (TCO / SnO2 / TiO2-SnO2 / TiO2 / Dye), and single-layer structure (TCO / TiO2 / Dye) compared to the working electrode, photoelectric conversion efficiency of no significant impact. In summary, the optimal process parameters seems to be that: TiO2 film thickness 1.55? 慆. Photoelectric conversion efficiency of the largest structure of its single-layer(TCO/ TiO2(1.55?慆)/Dye); VOC=0.69V, JSC=10 mA/cm2, FF=0.56,?釤3.9%. Two-tier structure(TCO/TiO2-SnO2/TiO2(1.55? '慆)/ Dye); VOC=0.71V, JSC=9.77 mA/cm2, FF=0.64, ?釤4.53%. Three-tier structure(TCO/ SnO2/ TiO2-SnO2 / TiO2(1.55? 慆)/ Dye); VOC=0.68V, JSC=10.1 mA/cm2, FF=0.57, ?釤4%.

Keywords : Dye-Sensitized Solar Cells, sol-gel, TiO2, Novel Photoanode Structures

Table of Contents

授權書	iii 中文摘要	iv ABSTRACT	
vi 誌謝	viii 目錄	ix 圖目錄	xii
表目錄	xiv 第一章 緒論	1 1.1 前言	1
1.2 太陽能電池種類.	21.2.1 無機太陽能電	፤池 3 1.2.2 有	ī機太陽能電池
	. 5 1.3 研究背景與目的	71.4 本文架構	7 第二章 文獻
回顧與理論原理		82.2 TiO2 工作電極	
10 2.3 染料	12 2.4 對電極	14 - x - 2.5 染料	敏化太陽能電池之等效電
路 15	2.6 染料敏化太陽能電池之光電轉換特性	16 2.6.1 短路電流(ISC	, short circuit current)
16 2.6.2 開路	電壓(VOC, open circuit voltage)	17 2.6.3 填充因子(FF,fill factor)	17 2.6.4 能
量轉換效率(, pow	ver conversion efficiency) 18 第三章 實驗詞	設備與方法2	03.1 實驗設備
	20 3.2 藥品耗材	21 3.3 實驗方法	
驗流程	22 3.3.2 ITO 玻璃基板之清洗.		作電極
	24 3.3.4 能隙阻障光電極製備		ē層結構
29 3.3.4.2 新穎工作電	፤極三層結構 29 3.3.5 Pt 對	電極製備3	0 3.3.6 染料配製

		表面吸附染料量
	8 元件組裝	. 33 3.4 量測設備
	分析 35 3.4.2 太陽能電泳	也效率量測系統
	37 3.4.4 XRD 繞射分析	
結果與討論	40 4.1.1 TiO2 膜層	厚度分析
	44 4.1.3 熱處理的溫度	51 4.1.4
UV-Vis 吸收光譜分析圖	.I Water 溶劑分析 59 4	.2 PEG 於TiO2 工作電
極之影響	63 5.1 結論	63 5.2 建議
64 參考文獻	65 圖目錄 圖1-1 太陽能電池的	種類
	9圖2-2 DSSC 之工作原理	
圖2-3 各種氧化物半導體的能階示意圖	科敏化太陽能電池之等效電路	
敏化太陽能電池未受光之I-V 特性曲線圖	七太陽能電池受光之I-V 特性曲線圖	
DSSC 製作流程圖	作流程圖	TiO2 製備流程示意圖
25 圖3-4 濃縮系統 26	6 圖 3-5 Sol-ael SnO2	
結構	30 圖3-8 三層結構	
30 周3-9 DSSC 結構示音圖 34 周3-10 UV-Vi	is 儀器	3-11 大陽能雷池效率
量測系統 36 圖3-12 場發射雷子顯微鏡	37 圖4-1 TiO2 各涂圙之	SFM 的膜厚
■ 42 周4-2 丁作雷極不同瞙厚之IV curve	43 周4-3 單層工作電極之10	
45 圖4-4 雙層工作電極之IV curve 46 圖4-5 三層	T作雷極之IV curve	47 圖4-6 TiO2 表面
- ビージョン ビージョン - ビージー	48 圖4-8 SnO2 表面形	····· 四······ () 能
49 圖4-9 TiO2-SnO2/TiO2 表面形能	49 圖4-10 SnO2/TiO2 表	■ 而 形 能
50 周4-11 SnO2/TiO2-SnO2/TiO2 表面形能	50 周4-12 TiO2 退火30	、 111450 XRD
51 周4-13 TiO2 一 區很少300 到450	52 周4-14 TiO2 [—] 屆退火300	· 포]400 X(C) 죄 450
53 周4-15 TiO2 二 固足火000 到100	54 周4-16 未吸收染料之TiO2]	「作雪極之吸收光譜
56 周4-17 未吸附和已吸附染料之TiO2 工作電極之吸收	·····································	17-电湿之领420-66 箔工作雷杨留属之吸
	光道 50 画+ 10 この所来れる新 光蓮 57 周4-20 豆吸附込料う	☆上1F电™半個之效 *新箔工作雪杨三屆之
	50 国4-22 乙炔的米科之	
		小加重於 1102 /G/仪平 90 研究近辺
6 末2.1 室驗設備 20 引	X平	21 表3-3 配制不同
	X3-2 架吅口件 donatasa 扣之VPD paaka 扣閱位罢	21 衣3-3 毛表个问 20 主4 1 工作電场
「辰反木竹冶(水际()(冶川), D.1. Water)	allalase 伯之不已 peaks 伯谢世里…	35 衣牛 1 上 IF 电悭 工作電场
119時存入12 衣坑	uive	LIF电型之IV CUIVE
	4/ 衣4-3 1102 一眉返火300 到	400 54 主4 0 天
32 夜4-0 1102 眉返火300 到450	─2 二階返次300 到450	
回 HO2 層數之吸附柴科及卒取於水浴劑 61 表4-9 个同PI	EG	

REFERENCES

[1] M.Gratzel, " pHotoelectrochemical cells, " Nature , 414,338-334(2001) [2] 莊嘉琛 " 太陽能工程-太陽能電池篇 " , 全華 , 台北市 , 第一章 、第二章、第四章 , 民86.

[3] M.Gratzel, "Powering the planet Nature, 403,363(2000) [4] wikipedia http://en.wikipedia.org/wiki/Solar_power_satellite [5] 大葉大學 電機工程研究所碩士論文, "CuPc-C60有機光電元件之製作與特性研究", 沈師宇2006.

[6] 林明獻,太陽電池技術入門.P1-7.

[7] http://www.eettaiwan.com/ART_8800403155_480202_NT_f6a216a0.HTM [8] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, "4.2% efficientorganic photovoltaic cells with low series resistances", Appl.phys. Lett, 84, 3013.(2004).

[9] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct.Mater. 13, 85.(2003).

[10] H. Tsubomura ; M. Matsumura ; Y. Nomura and T. Amamiya , Nature, 261, 402. (1976).

[11] Graetzel, M. et al., Nature, 335, p737.(1991).

[12] Graetzel, M., Inorg. Chem., 44(20), P6841.(2005).

[13]李元智,染料敏化太陽電池與模組,工業材料雜誌255期,P102.

[14] 荒川裕則, 色素增感太陽電池最新技術, P214, 日本.

[15] D. Matthews, P. Infelta, M. Gratzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes", Sol. Energy Mater. Sol. Cells, 44,119.(1996).

[16] K. Kalyanasundaram, M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices", Coordination Chemistry Reviews, 77, 347~414.(1998).

[17] M. Gratzel, "Photoelectrochemical cells." Nature, Vol. 414,338-344, Nov 15.(2001).

[18] 劉茂煌,奈米光電池,工業材料雜誌203期,P93.

[19] K. Kalyanasundaram and M. Gratzel, "Applications of functionalized transition metal complexes in photonic andoptoelectronic devices," Coordin. Chem. Rev., 77, 347.(1998).

[20] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, "Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes", Sol. Energy Mater. Sol. Cells, 77, 89. (2003).

[21] T. Horiuchi, H. Miura, S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells", Chem. Commun., 3036. (2003). [22] 章永樑, 釕金屬染料在染料敏化太陽電池的演進,工業材料雜誌255期, P110.

[23] A. Kay, M. Gratzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Sol. Energy Mater. Sol. Cells, 44, 99(1996).

[24] J.photochem., and photobio.A:Chemistry, 164(2004)179-182.

[25] J.Am.Chem.SOC.,115(1993)6382-6390.

[26] J.photochem., and photobio. A: Chemistry, 145(2001)107-112.

[27] Electrochimica Actr.,51(2006)3814-3819.

[28] Synthetic Metal.,77(1996)47-49182.

[29]國立交通大學電子物理系博士論文, "GaNAs材料磊晶成長與AIAs濕氧化膜之研究", 2001.

[30] Holger Spanggaard, Frederik C. Krebs, "A brief history of the development of organic and polymeric photovoltaics", Solar Energy Materials & Solar Cells 83 (2004) 125-146.

[31] Jin-Kook Lee A Bo-Hwa Jeong A Sung-II Jang A Yun-Seon Yeo A Sung-Hae Park A Ji-Un Kim A Young-Guen Kim A Yong-Wook Jang A Mi-Ra Kim; J Mater Sci: Mater Electron .

[32] Zhaoyue Liua,b, Kai Pana, Min Liua, Meijia Wanga, Qiang L ua,Jinghong Lib,Yubai Baia, Tiejin Lia; Electrochimica Acta 50 (2005) 2583 – 2589.

[33] Andrew Stanley ; Dennis Matthews; Aust. J. Chem, 1995, 48, 1293-1300.

[34] Christophe J. Barbe ', Francine Arendse, Pascal Comte, Marie Jirousek, Frank Lenzmann, Michael Gratzel "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications "J.Am. Ceram. Soc., 80, 3157-7171. (1997).