新穎工作電極之製備及其應用於染敏太陽電池之研究

林鼎翔、姚品全

E-mail: 9806480@mail.dyu.edu.tw

摘要

本研究以Sol-gel TiO2 作為染敏太陽電池(Dye-Sensitized Solar Cells, DSSC)之工作電極,研究製程參數對DSSC 光電轉換 效率的影響,並利用能隙阻障的概念,以sol-ael SnO2 進行工作電極結構的修飾,嘗試得到更佳的光電轉換效率。首先研 究工作電極製程參數,以旋轉塗佈法將調配好的TiO2漿料塗佈於ITO 導電玻璃基板上,探討以不同厚度與不同退火溫度 製作之TiO2 工作電極,所形成中孔奈米晶薄膜工作電極之差異。研究發現:奈米孔隙的TiO2 經由燒結容易形成緻密結構 的薄膜電極,藉由添加不同比例之高分子,調整工作電極孔隙結構,可有效增加染料的被覆量,增加入射可見光的吸收, 以提升整體DSSC 光電轉換效能。總結1.55?慆 膜厚之TiO2 工作電極可得最佳光電轉換效率,低於1.55?慆 時,染料的吸附 量尚未飽和,當膜厚超過1.55m時,TiO2 薄膜易於乾燥後龜裂,使成膜品質欠佳,整體轉換效能因而下降。相同膜厚等條 件下,發現退火溫度以450 時,可以得到最佳的光電轉換效率。以上述最佳製程參數,利用能隙阻障的概念,以sol-gel SnO2進行工作電極結構的修飾,所得DSSC 元件,以標準光源進行光伏特性(photovoltaic performance)測試。探討此系列新 穎工作電極結構,對染敏太陽電池光電轉換效率提升的可行性。在雙層結構(TCO/TiO2-SnO2 / TiO2 / Dye)時除了JSC 略 為下降0.23 mA/cm2,VOC、FF、?堿珙陘W升。在三層結構時(TCO/ SnO2 / TiO2-SnO2 / TiO2 / Dye),與單層結 構(TCO/ TiO2 / Dye)工作電極相較,對光電轉換效率並無明顯影響。綜合以上結論,可知本研究之最佳製程參數:(1)單 層結構(TCO/TiO2(1.55?慆)/Dye)最大光電轉換效率:VOC=0.69V、JSC=10mA/cm2、FF=0.56、?釤3.9%;雙層結 構(TCO/ TiO2-SnO2/TiO2(1.55?慆)/ Dye) 最大光電轉換效率: VOC=0.71V 、JSC=9.77mA/cm2、FF=0.64、?釤4.53%; 三層結構(TCO/ SnO2/ TiO2-SnO2 / TiO2(1.55?慆)/ Dye) 最大光電轉換效率: VOC=0.68V、JSC=10.1mA/cm2、FF=0.57 、?釤4%。

關鍵詞:染敏太陽電池,溶膠-凝膠法、二氧化鈦,新穎工作電極

授權書	iii 中文摘要	iv ABSTRACT.	
vi 誌謝	viii 目錄	ix 圖目錄	xii
表目錄	xiv 第一章 緒論	11.1 前言	
1.2 太陽能電池種類		幾太陽能電池3 1.2	2 有機太陽能電池
	5 1.3 研究背景與目的	7 1.4 本文架構	7 第二章 文獻
回顧與理論原理		8 2.2 TiO2 工作電	極
10 2.3 染料			染料敏化太陽能電池之等效電
路 15 2	6 染料敏化太陽能電池之光電轉	專換特性 16 2.6.1 短路電流(I	SC, short circuit current)
16 2.6.2 開路電	፪壓(VOC, open circuit voltage)	17 2.6.3 填充因子(FF,fill facto	r)17 2.6.4 能
量轉換效率(, powe	r conversion efficiency) 18 第3	三章 實驗設備與方法	20 3.1 實驗設備
	20 3.2 藥品耗材		
驗流程	22 3.3.2 ITO 玻璃基	扳之清洗	
	24 3.3.4 能隙阻障光電極製備		極雙層結構
29 3.3.4.2 新穎工作電相	亟三層結構	3.3.5 Pt 對電極製備	30 3.3.6 染料配製
	31 3.3.6.1 染料用於不同溶劑	製備31 3.3.6.2 測試工作	乍電極表面吸附染料量
	電解液調製	33 3.3.8 元件組裝	
	35 3.4.1 紫外光-可見光光譜	\儀(UV-Vis)分析	影能電池效率量測系統
	4.3 場發射電子顯微鏡	37 3.4.4 XRD 繞射分析	
結果與討論	40 4.1 工作電極之	.分析 40 4.1.1 TiC	2 膜層厚度分析
	4.1.2 新穎工作電極之分析		51 4.1.4
UV-Vis 吸收光譜分析[圖 55 4.1.5 D7	19 染料於D.I Water 溶劑分析	59 4.2 PEG 於TiO2 工作電
極之影響	61 第五章 結論	63 5.1 結論	63 5.2 建議
	64 參考文獻	65 圖目錄 圖1-1 太陽能	電池的種類
	圖2-1 DSSC 之基本結構	9 圖2-2 DSSC 之工作原理	10

目錄

敏化太陽能電池未受光之I-V 特性曲線圖 19 圖2-6 染料敏化太陽能電池受光之I-V 特性曲線圖 19 圖3-1 到450 XRD 收光譜 57 圖4-19 已吸附染料之新穎工作電極雙層之吸收光譜 57 圖4-20 已吸附染料之新穎工作電極三層之 吸收光譜 58 圖4-21 不同D719 濃度於去離子水中 59 圖4-22 不同染料濃度於水溶劑之310nm 對照吸 收峰………… 60 圖4-23 不同TiO2 層數之吸附染料反萃取於水溶劑之吸收光譜… 60 圖4-24 不同PEG 添加量於TiO2 溶液中 濃度染料溶液樣品 (溶劑:D.I. Water) 32 表3-4 TiO2 rutile 與anatase 相之XRD peaks 相關位置 39 表4-1 工作電極

參考文獻

[1] M.Gratzel, " pHotoelectrochemical cells, " Nature , 414,338-334(2001) [2] 莊嘉琛 " 太陽能工程-太陽能電池篇 " , 全華 , 台北市 , 第一章 、第二章、第四章 , 民86.

[3] M.Gratzel, "Powering the planet Nature, 403,363(2000) [4] wikipedia http://en.wikipedia.org/wiki/Solar_power_satellite [5] 大葉大學 電機工程研究所碩士論文, "CuPc-C60有機光電元件之製作與特性研究", 沈師宇2006.

[6] 林明獻,太陽電池技術入門.P1-7.

[7] http://www.eettaiwan.com/ART_8800403155_480202_NT_f6a216a0.HTM [8] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, "4.2% efficientorganic photovoltaic cells with low series resistances", Appl.phys. Lett, 84, 3013.(2004).

[9] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct.Mater. 13, 85.(2003).

[10] H. Tsubomura ; M. Matsumura ; Y. Nomura and T. Amamiya , Nature, 261, 402. (1976).

[11] Graetzel, M. et al., Nature, 335, p737.(1991).

[12] Graetzel, M., Inorg. Chem., 44(20),P6841.(2005).

[13]李元智,染料敏化太陽電池與模組,工業材料雜誌255期,P102.

[14] 荒川裕則, 色素增感太陽電池最新技術, P214, 日本.

[15] D. Matthews, P. Infelta, M. Gratzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes", Sol. Energy Mater. Sol. Cells, 44,119.(1996).

[16] K. Kalyanasundaram, M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices", Coordination Chemistry Reviews, 77, 347~414.(1998).

[17] M. Gratzel, "Photoelectrochemical cells." Nature, Vol. 414,338-344, Nov 15.(2001).

[18] 劉茂煌,奈米光電池,工業材料雜誌203期,P93.

[19] K. Kalyanasundaram and M. Gratzel, "Applications of functionalized transition metal complexes in photonic andoptoelectronic devices," Coordin. Chem. Rev., 77, 347.(1998).

[20] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, "Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes", Sol. Energy Mater. Sol. Cells, 77, 89. (2003).

[21] T. Horiuchi, H. Miura, S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells", Chem. Commun., 3036. (2003). [22] 童永樑,釕金屬染料在染料敏化太陽電池的演進,工業材料雜誌255期, P110. [23] A. Kay, M. Gratzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Sol. Energy Mater. Sol. Cells, 44, 99(1996).

[24] J.photochem., and photobio.A:Chemistry, 164(2004)179-182.

[25] J.Am.Chem.SOC.,115(1993)6382-6390.

[26] J.photochem., and photobio. A: Chemistry, 145(2001)107-112.

[27] Electrochimica Actr.,51(2006)3814-3819.

[28] Synthetic Metal.,77(1996)47-49182.

[29]國立交通大學電子物理系博士論文, "GaNAs材料磊晶成長與AIAs濕氧化膜之研究", 2001.

[30] Holger Spanggaard, Frederik C. Krebs, "A brief history of the development of organic and polymeric photovoltaics", Solar Energy Materials & Solar Cells 83 (2004) 125-146.

[31] Jin-Kook Lee A Bo-Hwa Jeong A Sung-II Jang A Yun-Seon Yeo A Sung-Hae Park A Ji-Un Kim A Young-Guen Kim A Yong-Wook Jang A Mi-Ra Kim; J Mater Sci: Mater Electron .

[32] Zhaoyue Liua,b, Kai Pana, Min Liua, Meijia Wanga, Qiang L ua,Jinghong Lib,Yubai Baia, Tiejin Lia; Electrochimica Acta 50 (2005) 2583 – 2589.

[33] Andrew Stanley ; Dennis Matthews; Aust. J. Chem, 1995, 48, 1293-1300.

[34] Christophe J. Barbe ', Francine Arendse, Pascal Comte, Marie Jirousek, Frank Lenzmann, Michael Gratzel "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications "J.Am. Ceram. Soc., 80, 3157-7171. (1997).