以熱氧化及電化學沉積法於Ti-40Zr表面製作生物活性複合鍍層之研究

林志鴻、何文福

E-mail: 9708016@mail.dyu.edu.tw

摘要

中文摘要 鈦金屬由於具有高強度、優良的抗腐蝕性及生物相容性等優點,近年來在牙科和植入材方面已被廣泛的應用。但 由於鈦金屬在高溫極易氧化,而形成過厚易脫落的的氧化層,使得鈦金屬在燒附陶瓷上仍面臨許多問題。本研究選擇實驗 室新開發之Ti-40Zr合金為基材,在Ti-40Zr表面以不同溫度的熱氧化,製作出含氧化鋯的氧化薄膜,來做為HA與金屬基材 間的結合層,以求可增加HA塗層的附著力。再以電化學的方法在Ca(NO3)2 4H2O及(NH4)3PO4 3H2O混合溶液中製 作HA鍍膜,再進行鍍層之性質分析,包括表面形態分析、成分、相組成、耐蝕性、結合強度及生物適應性等。 結果經由 熱氧化表面處理之Ti-40Zr試片,經由固定的電位和時間可在基材表面形成均勻的氫氧基磷灰石鍍膜,經由XRD分析可發 現經600 熱處理可增加氫氧基磷灰石的結晶性,經由拉伸試驗可發現600 熱氧化之試片,具有最強的結合強度,經由腐 蝕測試可發現600 熱氧化之試片,具有最佳的耐蝕性。而氫氧基磷灰石有助於提升Ti-40Zr植體與細胞的附著以及蛋白質 連結的機率。所以表面氧化層能有助於提高Ti-40Zr植體的耐腐蝕性,使Ti-40Zr植體置於人體減少金屬離子釋出問題,並 延長Ti-40Zr植體壽命。 關鍵詞:電化學方法,熱氧化法,氫氧基磷灰石,氧化鋯

關鍵詞:電化學方法;熱氧化法;氫氧基磷灰石;氧化鋯

目錄 封面內頁 簽名頁 授權	書	iii 中文摘要	iv 英文摘
要	v 誌謝	vi 目	
錄	viii 圖目錄	xi 表目	
錄	xVi 第一章 緒論	1 1.1 前	Ī
言	1 1.2 研究目的	2第二章 文獻回	
顧	4 2.1 生醫材料	4 2.1.1 生醫材料的	的分
類4	2.1.2 生醫材料的發展	6 2.2 鈣磷酸鹽	8 2.2.1 氫
氧基磷灰石	82.2.2 -三鈣磷酸鹽	9 2.3 鈦與鈦合金	
2.3.1 二氧化鈦	12 2.3.2 鈦鋯合金	13 2.4 氧化鋯	
第三章 實驗材料與方法	18 3.1 實驗林	才料製備	18 3.1.1 試片的製
備19) 3.1.2 熱氧化法	19 3.1.3 溶液的備製	19 3.1.4 鍍膜
的備製	20 3.2 材料特性分析		21
3.2.2 熱重測試		21 3.2.4 X光繞射	! 分析
22 3.2.5 鍵結強度測試		式 22 3.2.6.1	動態極化測試
	開路電位測試233	3.3 生物適應性評估	
化試片與細胞共培養			र्ग
論	28 4.1 陰極極化分		的影
響	4.2.1 未經熱氧化試片鍍膜		/試片鍍膜
37 4.2.3 經300 熱氧化試片	⁻ 鍍膜38 4.2.4 經40	0 熱氧化試片鍍膜	38 4.2.5 經500 熱氧化
試片鍍膜	39 4.2.6 經600 熱氧化試片鍍膜		40 4.3
熱重分析(TGA)	53 4.4 橫截面觀察	54 4.5 XRD	分
析	58 4.6 Ca/P分析	62 4.7結合強度測試	
4.8 耐蝕性分析	68 4.8.1 開路電位分析	斤68 4.8.2 批	t覆HA鍍膜後之開路電位分
析70 4.8.3 動	態極化分析72	2 4.8.4 批覆HA鍍膜後之動態極化	分析73 4.9 生
物適應性評估	75 4.9.1 細胞貼附觀察	75 4.9.2 細胞 [」]	增生評估分
析78 第	五章 結論		82 圖目
錄圖2.1 二氧化鈦之晶體結	構, (a)Anatase; (b) Rutile; (c) Brook	kite [26]17 圖3.1 實驗流程	
圖	18圖4.1 H-0於Ca(NO3)2 4H	2O及(NH4)3PO4 3H2O混合溶液	夜中之陰極極化曲線圖30
圖4.2 H-2於Ca(NO3)2 4H2	2O及(NH4)3PO4 3H2O混合溶液中	中之陰極極化曲線圖31 圖4.3 H	1-3於Ca(NO3)2 4H2O
及(NH4)3PO4 3H2O混合>	容液中之陰極極化曲線圖32 圖4.	4 H-4於Ca(NO3)2 4H2O及(NH4	4)3PO4 3H2O混合溶液中

目錄

之陰極極化曲線圖......33 圖4.5 H-5於Ca(NO3)2 4H2O及(NH4)3PO4 3H2O混合溶液中之陰極極化曲線圖......34 圖4.6 H-6 於Ca(NO3)2 4H2O及(NH4)3PO4 3H2O混合溶液中之陰極極化曲線圖......35 圖4.7 為(H-0、H-2、H-3、H-4、H-5、H-6) 在Ca(NO3)2.4H2O及NH4H2PO4混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,(a)沈積時間1000 秒: (b)沈積時間3000秒: (c)沈積時間5000秒: 觀察倍率×100。......41圖4.9 H-2在Ca(NO3)2.4H2O 及NH4H2PO4混合溶液中, 製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,(a)沈積時間1000秒:(b)沈積時間3000 製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,(a)沈積時間1000秒: (b)沈積時間3000秒:(c)沈積時間5000秒:觀察 圖4.12 H-5在Ca(NO3)2.4H2O及NH4H2PO4混合溶液中, 製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,(a)沈 .4H2O及NH4H2PO4混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,(a)沈積時間1000秒:(b)沈積 時間3000秒:(c)沈積時間5000秒:觀察倍率×100。......46圖4.14 H-0依最佳參數,在Ca(NO3)2 4H2O 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 率為×1000;(b) 觀察倍率為×2000。......4H2O 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 率為×1000; (b) 觀察倍率為×2000。......51 圖4.18 H-5依最佳參數,在Ca(NO3)2 4H2O 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 及(NH4)3PO4 3H2O混合溶液中,製作片狀HA鍍膜試片之SEM表面觀察,沈積電位-1.3V,沈積時間3000秒:(a)觀察倍 及(NH4)3PO4 3H2O混合溶液中製作HA鍍膜經350 熱處理一小時後之XRD繞射圖。………………………61圖4.29 為經不同 溫度熱氧化之試片在Ca(NO3)2 4H2O及(NH4)3PO4 3H2O混合溶液中製作HA鍍膜經600 熱處理一小時後之XRD繞射 。........70 圖4.34 Ti-40Zr表面經不同溫度熱氧化再以最佳參數批覆HA鍍膜經600 一小時熱處理試片在人工模凝體液中 MG-63 骨母細胞貼附於CH-6試片表面之SEM觀察: (a)觀察的倍率為 × 1000; (b) 觀察的倍率為 × 2000 各試片定電位沈積之最佳參數表......47

參考文獻

參考文獻 [1] Parr GR, Gardner LK, Toth RW. Titanium the mystery metal of implant dentistry. Prosth Dent 1985; 54(3):410-414. [2] Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implant. J Biomed Mater Res 1970;13:217-250.

[3] 陳瑞龍,電化學沈積HA/TiO2生醫陶瓷鍍膜於Ti-6AI-4V合金製程參數之研究,國立中興大學材料工程學系碩士論文,2004。

[4] Hench LL. Bioceramics: From Concept to Clinic, J Am Ceram Soc 1991;74(7): 1487-1510.

[5] Song HJ, Kim In, Yang HS. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation. J Mater Sci: Mater Med 2007;18:565-575.

[6] Sundgren J E, Bodo P, Lundstram I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interf Sci 1986;110(2):470-473.

[7] Aoki H. Medical Applications of Hydroxyapatite. Ishiyaku-Euro America 1994;13-74.

[8] 陳威凱,牙科用鈦-鋯合金之微結構及性質研究,私立大葉大學機械工程學系碩士論文,2007。

[9] Wisbey A, Gregson P J. Peter L M. Effect of surface treatment on the dissolution of titanium based implant materuald. Biomaterial 1991;12(5):470-473.

[10] Rea T. The biological response to titanium and titanium-aluminum-vanadium alloy articles . Long-term animal studies. Biomaterials 1986:7(1):37-40.

[11] Groot KD. Bioceramics consisting of calcium phosphate salts. Biomaterials 1980;1(1):47-50.

[12] Khor KA, Fu L, Lim VJP, Cheang P. The effects Of ZrO2 on the phase compositions of plasma sprayed HA/YSZ composite coatings. Mater Sci Eng A 2000;276:160-166.

[13] Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramic,2nded. New York: 1976.p.368.

[14] Peltier LE. The use of plaster of paris to fill defect in bone. Clin Orthop1961;21:1-31.

[15] Harker LA, Ratner BD, Disisheim P. Cardiovascular biomaterials and Biocompatibility, A guide to the study of blood-tissue-material interactions, Supplement to Cardiovasc Pathol 1993;2(3)(suppl):IS-2245.

[16] Park JB, Lakers RS. Biomaterials: An Introduction to Ceramic, 2nded, Plenum Press New York London: Plenum Press. 1992.

[17] Feenstra L, de Groot K. Medical use of calcium phosphate ceramics. In: de Groot K, editor. Bioceramics of calcium phosphate. Boca Raton, FL: CRC Press, 1982. p. 131-134.

[18] Lin FH, Lin CC, Liu HC, Huang YY, Wang YY. Sintered porous-bioglass & hydroxyapatite as bone substitute. Biomaterials 1994;15(13):1087-1098.

[19] Jarcho M, Salsbury RL, Thomas MB. Synthetic and fabrication of B-TCP ceramic for potential prosthesis application. J mater sci 1979;14:142-150.

[20] Lin FH, Hon MH, Liu HC. Preparation and cell culture test of sintered B-TCP phosphate ceramic. Chem Eng Resear Bullet 1992;5(7):81-88. [21] 黃瓊嬅,骨內錨定,科學發展,2005;394。

[22] 楊哲青,生醫用鈦合金之滑動磨潤性質研究,國立成功大學材料科學與工程學系碩士論文,2003。

[23] Murray JL. Phase diagrams of binary titanium alloys. ASM Metal Park ohio 1987.197-211.

[24] Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;245-531.

[25] H Ping, XU Ke-wei, H Yong Study of porous titanium/hydroxyapatite multiple film based on Biological treatment 2002;30(3):316-320.

[26] 詹青豪,利用電漿處理對鈦植體二氧化鈦層之顯微結構與特性研究,私立龍華科技大學工程技術研究所碩士論文,2006。

[27] Zhou H, Liu Z, Li Z, Du J. Microarc Oxidation Coating and High-Temperature Oxidation Resistant Property on Ti Alloy. Xiyou Jinshu Cailiao yu Gongcheng 2005;34(11):1835-1838.

[28] Haugen H, Will J, Kohler A, Hopfner U, Algner J, Wintermantel E. Ceramic TiO2-foams: characterization of a potential scaffold. J Eur Ceram Soc 2004;24(4):661-668.

[29] 王盈錦、林峰輝、胡孝光,生物醫學材料,2002:255-269。

[30] Heuer AH. Transformation toughening in ZrO2-contaning ceramics. J Am Ceram Soc 1997 ;70(10): 689-698.

[31] Yen SK. Mechanism of electrolytic ZrO2 coating on commercial pure titanium. Mater chem phys 2000;63:256-262.

[32] Alemany LJ, Banares MA, Pardo E, Martin-Himenez F, Blasco JM. Morphological and structural characterization of a titanium dioxide system. Mater. Charact. 2000;44(3):271-275