The study of fault tolerance for hamiltonicity of node expansion on hypercube = 超立方體點 拓展圖形的漢米爾頓容錯性質之研

張烜瀚、洪春男

E-mail: 9707315@mail.dyu.edu.tw

摘要

關鍵詞: Hypercube; Node expansion; Spanning disjoint path

目錄

封面內頁 簽名頁 授權書	
iv 中文摘要	v 誌謝
vi 目錄	vii 圖目錄
viii Chapter	1 Introduction and Definitions1 Chapter 2
Fault Hamiltonicity for Node Expansion of Hypercube	
Some Spanning Disjoint Path of Complete Graph	6 2.2 Vertex Fault Tolerance for Multiple
Spanning Paths in Hypercube	10 2.3 Fault Tolerance for Node Expansion of Hypercube
12 Chapter 3 F	Fault tolerance Hamiltonian Connected for Node Expansion of Hypercube
16 3.1 Fault Tolerance Han	niltonian Connected on Complete
Graph16 3.2 Fa	ult Tolerance for Any Spanning Disjoint Paths of Complete Graph
19 3.3 Fault Tolerance H	amiltonian Connected for Node Expansion on
Hypercube23 Chapter 4	Conclusion32

參考文獻

- [1] Toru Araki and Yosuke Kikuchi, Hamiltonian laceability of bubble-sort graphs with edge faults," Information Sciences, pp.2679-2691, (2007)
- [2] Rostislav Caha and Vclav Koubek, Spanning multi-paths in Hypercubes," Discrete Mathematics, pp.2053-2066, (2007).
- [3] Y-Chuang Chen, Chang-Hsiung Tsai, Lih-Hsing Hsu, Jimmy J.M. Tan On some super Fault-tolerant Hamiltonian graphs," Applied Mathematics and Computation, pp.729-741, (2004) [4] Tomas Dvorak and Petr Gregor Hamiltonian Fault-tolerance of Hypercubes," Electronic Notes in Discrete Mathematics, pp.471-477, (2007) [5] Tomas Dvorak and Petr Gregor Hamiltonian paths with prescribed edges in Hypercubes," Discrete Mathematics, pp.1982-1998, (2007) [6] Jianxi Fan, Xiaola Lin, Yi Pan, Xiaohua Jia Optimal Fault-tolerant em- bedding of paths in twisted cubes," J. Parallel Distrib. Comput., pp.205-214, (2007) [7] Jung-Sheng Fu, Conditional fault Hamiltonicity of the complete graph," To appear Information Processing Letters, (2008) [8] Hong-Chun Hsu, Liang-Chih Chiang, Jimmy J.M. Tan and Lih-Hsing Hsu, Fault Hamiltonicity of augmented cubes," Parallel Computing, pp.131-145, (2005).
- [9] Wen-Tzeng Huang, Y.C. Chuang, J.M. Tan and L.H. Hsu, On the Fault- tolerant Hamiltonicity of faulty crossed cubes," IEICE Transaction on Fun- damentals of Electronics, Communications and Computer Sciences, pp.1359-1370, (2002).
- [10] Wen-Tzeng Huang, J. M. Tan, C. N. Hung, and L. H. Hsu, Fault-tolerant Hamiltonicity of twisted cubes," Journal of Parallel and Distributed Comput- ing, pp.519-604, (2002). {33{ [11] Chun-Nan Hung, Lih-Hsing Hsu, and Ting-Yi Sung, On the Construction of Combined k-Fault-Tolerant Hamiltonian Graphs," NETWORKS, pp.165-170, (2001).

- [12] Hao-Shun Hung, Jung-Sheng Fu, and Gen-Huey Chen, Fault-free Hamilto- nian cycles in crossed cubes with conditional link faults," Information Sci- ences, pp.5664-5674, (2007).
- [13] Chun-Nan Hung, Hsuan-Han Chang, and Guan-Yu Shi, Fault tolerance for Hamiltonian cycle of node expansion on Hypercube," National Computer Sym- posium, pp.621-626, (2007).
- [14] Chun-Nan Hung, Chi-Lai Liu, and Hsuan-Han Chang, Edge for tolerance for two spanning disjoint paths of Star network," Processing of the 25rd Work- shop on Combinatorial Mathematics and Computational Theory, pp.375-384, (2008).
- [15] Chun-Nan Hung and Guan-Yu Shi, Vertex Fault tolerance for multiple span- ning paths in Hypercube," Processing of the 24rd Workshop on Combinatorial Mathematics and Computational Theory, pp.241-250, (2007).
- [16] Sun-Yuan Hsieh, Che-Nan Kuo, Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded Hypercubes," Computers and Mathematics with Applications, pp.1040-1044, (2007).
- [17] Sun-Yuan Hsieh, Gen-Huey Chen, Chin-Wen Ho, Hamiltonian-laceability of Star graphs," Networks, pp.225-232, (2000).
- [18] Tseng-Kuei Li, Jimmy J. M. Tan, Lih-Hsing Hsu, Hyper Hamiltonian lace- ability on edge fault Star graph," Information Sciences, pp.59-77, (2007).
- [19] Krishnendu Mukhopadhyaya, and Bhabani P. Sinha, Hamiltonian graphs with minimum number of edges for Fault-tolerant topologies," Information Processing Letters, pp.95-99, (1990).
- [20] Chong-Dae Park, Kyung-Yong Chwa, Hamiltonian properties on the class of Hypercube-like networks," Information Processing Letters, pp.11-17, (2005). {34{ [21] J.-H. Park, H.-C. Kim, H.-S. Lim, Fault-Hamiltonicity of Hypercube-like interconnection networks," IEEE International Parallel and Distributed Pro- cessing Symposium, pp.60a, (2005).
- [22] Youcef Saad and Martin H. Schultz, Topological properties of Hypercubes," IEEE Transactions On Computers, pp.867-872, (1998).
- [23] Chang-Hsiung Tsai, Jimmy J.M. Tan, Tyne Liang, Lih-Hsing Hsu, Fault- tolerant Hamiltonian laceability of Hypercubes," Information Processing Let- ters, pp.301-306, (2002).
- [24] Aniruddha S. Vaidya, P. S. Nagendra Rao, S. Ravi Shankar, A Class of Hypercube-like Networks," Proc. of the 5th Symp. on Parallel and Distributed Processing, pp.800-803, (1993). {3