Factor Affecting Activated Sludge Acclimation to Xenobiotics

Luong Thi Mai Ly、張玉明

E-mail: 9608197@mail.dyu.edu.tw

ABSTRACT

2,4-dichlorophenoxyacetic acid (2,4-D) is a widely applied herbicide introduced to the environment and becomes a pollutant. This organic pollutant is toxic and persistent, and called xenobiotic cause of its non - nature characteristic but can be degraded by activated sludge after an acclimation period. Several experiments were conducted in this study to determine the effects of factors on 2,4-D acclimation period and also the degradation time. Factors considered here include the initial concentration of 2,4-D and activated sludge, starved activated aludge, a biogenic substrate and similar substrate added prior to 2,4-D. The length of acclimation time is directly proportional to the increasing of initial activated sludge concentration and inversely proportional to the increasing of initial 2,4-D concentration. However it also depends on the combination of them in one. A combination of 100 mg/1 of initial 2,4-D concentration and 20 mg/1 of initial activated sludge was chosen as the most appropriate to conduct all experiments to explore the effects of starved sludge , of sucrose and phenol on lag period of 2,4-D degradation. Lacking of nutrient for 5 to 10 days is an advantage for shorten length of acclimation period and increasing rate of degradation. The presence of sucrose and phenol in solution before adding 2,4-D can sharply accumlated degradation capacity so that the acclimation phase under this condition is the shortest. With phenol, the reduction in lag time of activated sludge to 2,4-D was directly related to the concentration of phenol added. 100 mg/1 phenol added and degraded defore adding 2,4-D can reduce acclimation time from 72 hours to 14 hours.

Keywords : acclimation, 2,4-dichlorophenoxyacetic acid, activated sludge

Table of Contents

	iii 西文摘要			
vi 目釒	彖vii 符	號說明xi	ii Chapter 1.	
INTRODUCTION	1 1.1 Motivation	1 1.2 Oject and purposes	s3 1.3 The task	
3 Chapter	2. LITERATURE REVIEW		5 2.1.1 Generel	
principles of activated sludge pro	DCess5 2.	1.2 Biomass activated sludge		
sludge10 2.1.4 Xenobiotics degradability of activated sludge				
acid13 2.2.1 Chemical of	haracteristic13 2.2.2 2,4	1-D metabolism pathway	14 2.2.3 Application of 2,4-D	
17 2.2.4 Risk charac	terizations18 2.2.5 Sou	rce of 2,4-D in the environment	20 2.2.6 Research about 2,4-D	
21 2.3 Acclimation .	23 2.4 Diauxic	growth26 2.4.1	What is diauxic growth	
26 2.4.2 Diauxic grow	vth overview26 Chapter	3. METHODS AND MATERIA	ALS33 3.1 Materials	
and apparatus33 3.	1.1 Chemical substance	33 3.1.2 Activated sludge		
2,4-Dichlorophenoxyacetic acid			ethods	
Measurement of activated sludg	e concentration (as measure of SS)		Measurement of 2,4-D	
concentration remaining in each	n sample at regular interval	42 3.2.3 Estima	te of 2,4-D degradation rate	
44 3.3 Experimental design .	45 3.3.1 Experiment	1:Absorption 2,4-D by activated s	sludge cells	
3.2.4 Experiment 3: Effects of starved sludge on 2,4-D biodegradability				
adding a biogenic substrate(Sucrose)				
50 C h	apter 4.RESULTS AND DISCUS	SION52 4.1 Experimer	nt 1:Absorption 2,4-D by	
activated sludge cells	52 4.2 Experiment	t 2:Effects of starting 2,4-D and slu	udge concentrations	
54 4.	2.1 Effects of initial activated sludg	e concentrations	55 4.2.2 Effects of inital	
2,4-D concentrations				
biodegradabilitysubstrate(Sucrose) 67 4.4 Experiment 4:Effects of adding a biogenic substrate(Sucrose)				
different adding time points 74 4	4.4.3 Extra experiments: Effects of	increase in biomass	80 4.5 Experiment	
5:Effects of adding similar subst	rate (Phenol)		DNS86 5.1	

Effects of initial 1,4-D and sludge concentrations (I	Experiment 2)	86 5.2 Effects of starved sludge on 2,4-D	
biodegradability (Experiment 3)			
	similar substrate (Phenol)(Experiment 5)		
REFERENCE89			

REFERENCES

[1] Alexander, B.H., Mandel, J.S., Baker, B.A., Burns, C.J., Bartels, M.J, Acquavella J.F., and Gustin, C., 2007. Biomonitoring of

2,4-Dichlorophenoxyacetic Acid Exposure and Dose in Farm Families. Environmental health perspectives. 115 (3),370-376.

[2] Alexander, M., 1999. Biodegradation and Bioremediation, second edition. Academic Press. 17 [3] Amrane, A., Adour, L., and Couriol, D.,
2005a Anunstructured model for the diauxic growth of Penicillium camembertii on glucose and arginine. Biochemical Engineering
Journal. 24, 125-133.

[4] Amrane ,A.,Adour,L., and Couriol,C.,2005b.Diauxic growth of Penicillim camemdertii on glucose and arginine.Enzyme and Microbial Technology.36, 198-202.

[5] Arbuckle, T.E., Burnett, R., Cole, D., Teschke, K., Dosemeci, M., Bencej, C., et al., 2002. Predictors of herbicide exposure in farm applicators. Int Arch Occup Environ Health. 75(6), 406-414.

[6] Aksu, Z., and Kabasakal, E., 2005. Adsorption characteristics of 2,4- Dichlorophenoxyacetic acid from agueous solution on powdered activated carbon. Journal of Environmental science and health. 40(4),545-570.

[7] Buenrostro-Zagal, J.F., Ramirez-Oliva, A., Caffarel-Mendez, S., Schettino- Bermudez, and Poggi-Varaldo, H.M., 2000. Treatment of a 2,4-Dichlorophenoxyacetic acid (2,4-D) contaminated wastewater in a membrane bioreactor.Water Sci. Technol. 42(56),185-192.

[8] Buitron, G, Gonzalez, A., and Lopez-Marin, L.M., 1998. Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria, Wat. Sci. Tech. 37(4-5), 371-378.

[9] Center for Disease Control and Prevention, 2005. Third National Report on Human Exposure to Environmental Chemicals. Atlanta, GA : Centers for Disease Control and prevention. http://www.cd.gov/exposurereport/3rd/pdf/thirdrdreport.pdf [10] Chen,GW., Yu, H.Q., Xi, P.G., 2006. Influence of 2,4-dinitrophenol on the characteristics of activated sludge in batch reactors,Bioresorce Technology. 98, 729-733.

[11] Chin, H., Elefsiniotis, P., and Singhal, N., 2005. Biodegradation of 2,4- dichlorophenoxyacetic acid using an acidogenic anaerobic sequencing batch reactor. J. Environ. Eng. Sci 4, 57-63.

[12] Chong, M., Lin, Y., 2006. Measurement of the degradation capacty of activated sludge for a xenobiotic. Bioresource Technology. 98, 1124-1127.

[13] Close, M.E., 1993. Assessment of pesticide contamination of ground-water in New Zealand 2. Results of groundwater sampling N.Z.J. Mar. Freshw. Res.27,267-273.

[14] Daughton, C.G., Cook, A.M., Alexander, M., 1979. Phoshate and soil binding: factors limiting bacterial degration of ionic

phosphoruscontaining pesticide metabolites. Appl. Environ. Microbiol.37(3), 605-609.

[15] Department of National Health and Welfare, 1993. Water treatment principles and applications, a manual for the production of drinjing water. Canadian Water and Wastewater Association, Ottawa.

[16] Egli, T., 1995. The ecological and physic ological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microbiol. Ecol. 14,305-386.

[17] Encyclopedia Britannica Online, 2007.Package plant. Online Art. http://www.britannica.com/eb/art-19282.

[18] Environment Canada / Agriculture Canada, 1987. Pesticide Registrant Survey 1986 report. Commercial Chemicals Branch, Environment Canada, Ottawa.

[19] Ettala, M., Koskela, J., and Kiesila, A., 1992. Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Res. 26, 797-804.

[20] Fielding, M., Barcelo, D., Helweg, A., Galassi, S., Torstensoon, L., Van, Z.p., Wolter, R., and Angelotti, G, 1992. Pesticides in ground and drinking water. E. Guyot SA, Brussels, Belgium.

[21] Frank, R. and Logan, L., 1988. Pesticide and industrial chemical residues at the mouth of the Grand, Saugeen and Thames rivers, Ontario, Canada, 1981-85. Arch. Environ.Contam. Toxicol. 17,741.

[22] Frank, R., Campbell R.A., Sirons, G.J., 1985. Forestry workers involved in aerial application of 2,4-dichlorophenoxyacetic acid (2,4-D): exposure and urinary excretion. Arch Environ Contam Toxicol. 4, 427-435.

[23] Gonzalez, J. and Hu, W., 1991. Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp.Applied Mircrobiology and Biotechnology. 35, 100-104.

[24] Gouw, M., Bozic, R., Koopman, B., and Svoronos, S.A., 2001. Research note effect of nitrate expose history on yhe oxygen/nitrate diauxic growth of pseudomonas denitrificans. Wat Res. 35 (11), 2794-2798.

[25] Hamilton, W.A., Dawes, E.A., 1960. The nature of the diauxic effect with glucose and organic acids in Pseudomonas aeruginosa. Biochem. J.

76,70.

[26] Harder, W., Dijkhuizen, L., 1976. Mixed substrate utilization. In: Dean, A.C.R., Ellwood, D.C., Evans, C.G.T., Melling, J. (Eds.), Continuous Culture 6: Applications and New Fields. Ellis Horwood, Chichester. Chapter 23,297-314.

[27] Harder, W., Dijkhuisen, L., and Veldkamp, H., 1984 The Microbe. PII. Cambridge Univ. Press, Cambridge, UK.51-95.

[28] Hayes, H.M., et al., 1991. Case-Control Study of 2,4-Dichorophenoxyacetic Acid Herbicides. Journal of the National Cancer Institute. 83, 1226-1231.

[29] Hendrikson, H., Larsen, S., and Ahring, B., 1991. Anaerobic degradation of PCP and phenol in fixed-film reactors, the influence of an additional substrate. Water Science and Techology. 24,431-436.

[30] Hill,N.P., MacIntyre, A.E., Perry,R., and Lester, J.N., 1986. Behaviour of chlorophenoxy herbicides during activated aludge treatmant of municipal wastewater. Water Res. 20,45-52.

[31] Holland, P., and Anis, R., 1999. Pesticide trends in New Zealand. Ministry of Agriculture Technical Paper, Wellington, New Zealand.

[32] Jo, K., Silverstein, J., 2004. Acclimation of activated sludge to degrade toxic levels of 2,4-dinitrophenol. Water Sci Technol, 50(5), 45-50.

[33] Keuth, S. and Rehm, H., 1991. Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Applied Microbiology and Biotechnology.34,804-808.

[34] Kim, J., Smith, A., 2001. Distribution of organochlorine pestcides in soils from South Korea. Chemosphere. 43, 197-140.

[35] Kogevinas, M., 1995.Soft Tissue Sarcoma and non-Hodgkins Lymponmain Workers exposed to phenoxy-herbicides, chlorophenols, and dioxins - 2 nested case studies. Epidemiology.6(4),396-402.

[36] Kohli, J.D., Khanna, R.N., Gupta, B. N., Dhar, M. M., Tandon, J.S., Sircar, K.p., 1974. Absorption and excretion of 2,4-dichlorophenoxyacetic acid in man. Xenobiotica 4, 97-100.

[37] Kong, L.J., and Lemley, A.T.,2006. Kinetic Modeling of 2,4- Dichlorophenoxyacetic acid (2,4-D) degradation in soil s;urry by anodic fenton treatment.J.Agric.Food Chem.54,3941-3950.

[38] Kovarova-Kovar, K., Egli, T., 1998. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed substrate kinetics. Microbiol. Mol. Biol. Rev. 62,646-666.

[39] Lackmann, R.K., Maier, W.J., Shamat, N. A., 1980. Proceedings of the 35tj Purdue University Industrial Waste Conference. Ann Arbor press, Chelsea, MI. 502-515.

[40] Lenntech http://www.lenntech.com/wwtp/wwtp-activated-sludge-process.htm [41] Linkfield, T., Suflita, J., Tiedje, J., 1989.

Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Applied and environmental microbiology.55(11),2773-2778.

[42] Liu, P.H., Svoronos, S.A., Koopman, B., 1998. Experimental and modeling study of diauxic lag of Pseudomonas denitrificans switching from oxic to anoxic conditions. Biotechnol. Bioeng. 60(6), 649-655.

[43] Mangat,S.S., and Elefsiniotis, P., 1999. Biodegradation of the herbicide 2,4- dichlorophenoxyacetic acid in sequencing batch reactore. War. Rws. 33(3),981-867.

[44] Meric, S., Eremektar, G., Ciner, F., and Tunay, O., 2003. An OUR-bacsed approach to determine toxic effects of 2,4-dichlorophenoxyacetic acid in activated sludge Journal of Hazardous Materials. 101,147-155.

[45] Mihelcic, J., and Luthy, R., 1988. Degradation of po; y cyclic aromatic hydrocarbon under various redox conditions in soil-water systems. Applied and Environmental Microbiology. 54, 1182-1187.

[46] Monod, J., 1947. The phenomenon of enzymatic adaptation and its bearigs (Studies on the growth of bacterial

cultures). Actua. Sci. Ind. 911, 1-215.

[47] Monod, J., 1947. The phenomenon of enzymatic adaptation and its bearings on problems of genetics and cellular differentiation. Growth. 11, 223-289.

[48] Narang, A., 2006. Comparative analysis of some models of gene regulation in mixed - substrate microbial growth. Journal of Theoretical Biology. 242,489- 501.

[49] Neidhardt, F.C., Magasanik, B., 1957. Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogens. J.

Bacteriol.73(2),253-259 [50] Orhon, D., Talinli, I., and Tnay, O., 1989. The fate of 2,4-Din microbial structures. Water Res.23,1423-1430. [51] Pandit, G.G., Mohan-Rao,A.M., Jha,S.K., Krishnamoorthy,T.M., Kale,S.P., Raghu, K. Mangrat, S.S., 1997. Biological degradation of the phenoxy acid herbicide 2,4-dichlorophenoxyacetate in the presence of glucose. Biotechnology and Bioengineering.25(10),2337-2346.

[52] Que Hee,S.S., and Sutherland, R.G., 1981. The phenoxyalkanoic herbicides. Chemistry, analysis, and environmental pollution. Chemical Rubber Company Series in Pesticide Chemistry. CRC Press, Boca Raton, FL.I.

[53] Papanastasious, A., Maier, W, m 2004. Dynamics of biodegradation of 2,4- dichlorophenoxyacetate in the presence of glucose. Biotechnology and Bioengineering. 25(10), 2337-2346.

[54] Rozich, A.F., and Gaudy, A.F.Jr., 1992. Design and operation of activated sludge processes using respirometry. Lewis publishers.

[55] Shoda, M., Udaka, S., 1980. Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing a partially constitutive catechol 1,2- oxygenase. Applied and environmental microbiology.39(6),1129-1133.

[56] Sinton, G.L., Fan,L.T., Erickson,L.E., Lee,S.M., 1986s. Biodegradation of 2,4-D and related xenobiotic compounds. Enzyme and Microbial technology.8(7), 395-403.

[57] Swindoll, C., Aelion, C., and Pfaender, F., 1988. Influence of inorganic and organic nutrients on biodegradation and on the adaptation respone of subsurface [58] Topp, E., and Hanson, R., 1990. Degradation of pentachlorophenol by a Flavobacterium species grown in acontinuous culture under various nutrient limitations. Applied and Environmental Microbiology.56,541-544.

[59] Tyler, J.E., and Finn, R.K., 1974. Growth rates of Pseudomonas on 2,4- dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl. Microbiol.28, 181-184.

[60] Vroumsia, Y., Steiman, R., Seigle-Murandi, F., Benoit-Guyod, J.L., 1999. Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol by selected fungi. Chemosphere. 39(9), 1397-1405.

[61] Wiggins, B., Alexander, M., 1988. Role of chemical concentration and second carbon sources in acclimation of microbial communities for biodegradation. Applied and environmental microbiology.54(11),2803-2807.

[62] Wilson, G.J., Suidan, M.T., Maloney, S. W., and Brennerm, R.C., 1997. The biodegradation of 2,4-D industrial wastewater utilizing a pilot scale anaerobic GAC-FBR in Eastern Europe. Proceedings of WEFTEC 97 -70th Annual Conference and Exposition, Chicago III.Paper No.9771004.

[63] World Health Organization., 1984. 2,4-Dichlorophenoxyacetic acid (2,4-D). Environmental Health Criteria 29. International Progra mme on Chemical Safety, Geneva.

[64] Young, E., Oh, D.J., and Hill, B., 2006. http://umbbd.msi.umn.edu/2,4-d/2,4-d_image_map2.html.