超寬頻圓環開槽型單極天線之研究

康友誠、張道治

E-mail: 9511442@mail.dyu.edu.tw

摘要

在本篇論文當中,針對拋物面反射面天線及饋入源兩部分作一深入探討,在反射面天線設計部分,使用反射面天線之設計 原理及特性,設計出多波束形變反射面天線,並開發出一套模擬分析軟體,它可以分析天線增益、效率、波束寬、天線場 形及掃描的角度等等,?了驗證所開發之軟體,本次也選用了兩個多波束形變反射面天線來作實際量測,模擬與量測的結 果相當接近,亦增加了開發軟體之可信度。在饋入源設計部份,以經常被應用於反射面天線的波紋喇叭天線,設計以不同 的縱深長度、不同的孔徑形狀及不同的張角角度等三種形式,來探討其特性,同時也與實際量測作一比較。本次設計的波 紋喇叭天線將應用於小型衛星地面站收發雙向衛星天線之饋入源。最後再使用拋物面反射面天線作兩種不同的應用,第一 種應用是使用35公分的偏焦反射面天線,饋入源使用同軸電纜線之偶極天線及九十度角反射器來設計,不同於傳統的喇叭 天線當作饋入源,明顯的降低了成本及製作的難度,工作頻率從4.5GHz到5GHz,本次設計應用於區域性地點檢測之用。 第二種應用是使用一商用160公分的衛星直播天線,設計出一不需要微波暗室及邊緣處理之縮距天線量測場,並結合了時 域脈衝天線量測系統,此系統可以截取並移除反射面天線之邊緣所產生之繞射場,並經由三種天線型式(低指向性天線、高 指向性及Ka頻段之天線)之量測來驗證,使用新技術之量測結果,與傳統近場、遠場的量測結果都相當接近。本次所開發 的新天線量測場可以量測的天線大小高達55公分,工作頻率可以高達26GHz。關鍵詞:導波管,時域脈衝天線量測系統, 多波束反射面天線

關鍵詞:導波管,時域脈衝天線量測系統,多波束反射面天線

目錄

封面內頁 簽名頁 授權書	iii 中文摘要
viii 目錄 ix 圖目錄..
第一章 緒論 1.1 反射面天線之簡介	1 1.2 反射面天線之設計原理
.21.3孔徑場與遠場之轉換	本論文之架構....................6 第二章
多波束形變反射面天線之設計 2.1 多波束反射面天線之簡介	
化設計132.3多波束反射面天線之模擬分析及量測	結果比較..16 第三章 波紋喇叭天線之設計 3.1 波紋喇叭
天線之簡介33 3.2 不同結構的波紋	喇叭天線之設計.......33 3.3 波紋喇叭天線之
模擬與量測結果比較 36 第四章 小型衛星地面站收	發雙向衛星天線設計 4.1 小型衛星地面站收發雙向衛星天線
之簡介45 4.2 小型衛星地面站收發雙向衛星天線之設計	464.3 小型衛星地面站收發雙向衛星天線之模擬
分析與量測結果47 第	停五章 應用在地點探測之反射面天線設計 5.1 偶極天線及九
十度角反射器之簡介 57 5.2 偶極天線及九十度角	反射器之理論分析....57 5.3 偶極天線及九十度角
反射器之模擬分析與量測結果	59 第六章 不需要微波暗室及邊緣處理之
縮距天線量測場之設計 6.1 縮距天線量測場之簡介	66 6.2 不需要微波暗室及邊緣處理之縮距天
線量測場之理論分析.....................	67 6.3 不需要微波暗室及邊緣處理之縮距天線量測場之驗
證.........................68 第七章 結	論
考文獻87	′ 附錄 已發表之研討會論文、期刊及專利.......
...90 圖目錄 圖1.1 中心聚焦反射面天線........8 圖1.2 偏焦反射面天線.......
..........8 圖1.3 抛物面反射面天線幾何結構...	
場與遠場之轉換圖 9 圖1.5 孔徑場的幾何分析圖形 .	
形轉換之示意圖 10 圖1.7 橢圓形之孔徑	場與遠場之轉換............11 圖2.1 傳統
低軌道同步衛星直播系統	波束低軌道同步衛星直播系統
圖2.3 多個饋入源的抛物面反射面天線(形變前) 19) 圖2.4 形變前之大小分佈................
19 圖2.5 形變前的相位變化	20 圖2.6 形變前的反射面天線之位置變動量
反射面天線	

線之線性相位變化...22 圖2.11 打	地物面反射面天線修	改之相位變化	23 🗄	圖2.12 形變後
的相位變化.....		3 圖2.13 形變後的反	射面天線之變動量	1	..24 圖2.14
形變後的反射面天線場型	<u>!</u>	..24 圖2.15 二次	修正之抛物面反射	村面天線線性相位變化	Δ
圖2.16 二次修正之抛物面	i反射面天線修改之相位變	邊化....25 圖2.1	17 多波束形變反射	村面天線之設計流程 圖	1
26 圖2.18 大小尺寸為	352乘46公分之多波束反射	肘面天線....27	圖2.19分析之多波	皮束反射面天線場型.	
27圖2.20實際量	遣測之多波束反射面天線 均	昜型.......	28 圖2.21 大小	小尺寸為85乘62公分之	之多波束反射
面天線 28 圖2.22	2分析之多波束反射面天線	禄型.....		.23 實際量測之多波束	反射面天線場
型29)圖2.24 分析軟體的操作)	流程圖..... .		30 圖3.1波紋喇叭天	線的幾何圖形
	...37 圖3.2 縱深長度	為七圈與十圈的波約	文喇叭天線37 圖3.3 柞	莫擬七圈與十
圈波紋喇叭天線之反射損	[失.......38 圖3	3.4 七圈與十圈的波約	文喇叭天線模擬之	E-plane場型....	38 圖3.5 孔徑
形狀為圓形與橢圓形的波	<i>【</i> 紋喇叭天線	. 39 圖3.6 模擬圓刑	《與橢圓形波紋喇	叭天線之反射損失 .	39
圖3.7 模擬圓形與橢圓形	波紋喇叭天線之E-plane場	型...40 圖3.8	模擬圓形與橢圓刑	修波紋喇叭天線之H-p	lane場型..
..40 圖3.9 張角角度為	45度、60度及90度的波紋	(喇叭天線... 4	1 圖3.10 模擬開口	張角為45度、60度及	90度的反射損
失...41 圖3.11 模擬4	5度、60度及90度張角的B	-plane場型....	42 圖3.12 張角60	度之波紋喇叭天線在這	近場之量測情
形....42 圖3.13 引	長角60度之波紋喇叭天線的	的模擬與量測之E-pla	ane場型		
.....43 圖3.14 張角	自90度之波紋喇叭天線在這	近場之量測情形	...43 圖3.15 引	長角90度之波紋喇叭ラ	天線的模擬與
量測之E-plane場型...			. 44 圖4.1 正交模	式收發器.....	
	波紋喇叭天線加上OMT之	[實體圖	49 匿	圖4.3 波紋喇叭天線之	反射損失模擬
圖	. 50 圖4.4 波紋喇叭天線	加上OMT的反射損	失量測圖....	...50 圖4.5 波紋	喇叭天線在近
場量測天線場型圖...51 圖4.6 波	紋喇叭天線發射端的	的模擬與量測的E-p	olane場型...51 圖	4.7 波紋喇叭
天線發射端的模擬與量測	I的H-plane場型...52	圖4.8 波紋喇叭天線	接收端的模擬與量	割的E-plane場型	. 52 圖4.9 波
紋喇叭天線接收端的模擬	與量測的H-plane場型.	..53 圖4.10 VSAT	天線在近場量測場	易型圖.......	53
圖4.11 VSAT在發射端量	測的E-plane及H-plane場型	型....54 圖4.12	VSAT在接收端量	測的E-plane及H-plan	e場型
. 54 圖4.13 VSAT在室外	遠場量測場型	5	55 圖4.14 VSAT在	發射端量測的Azimutl	h場型...
......55 圖4.15 \	/SAT在發射端量測的Azir	nuth場型.....56 圖5.1	量測偶極天線之反射	損失....
6	圖5.2 偶極天線大小尺寸	之幾何圖形....		. 61 圖5.3 九十度角反	反射器之影像原
理	...62 圖5.4 偶極天線 	加上九十度角反射器	器尺寸......	62 圖5.5 反	反射損失的模
擬與量測的結果比較	63 圖5	5.6 偶極天線加上角反	z射器E-plane場型	之模擬與量測比較.	63 圖5.7 偶極
天線加上角反射器H-plar	ie場型之模擬與量測比較	. 64 圖5.8 使用縮距:	天線量測系統來量	上割新研發之反射面天 1991年1991年1991年1991年1991年1991年1991年199	線64
圖5.9 新研發反射面天線	之H-plane場型		X-Y平面掃描器刻	來調校縮距反射面量測	则場....
72 圖6.2 水平切面	的相位,脈衝時域量測系	:統(實線),頻域量測	系統 (點狀線)		
72 圖6.3 垂直切	面的相位,脈衝時域量測	系統(實線),頻域量)	測系統(點狀線).		
73 圖6.4 水平	切面的大小,脈衝時域量	测系統(實線),頻域	量測系統 (點狀線))	
	直切面的大小,脈衝時域	注量測糸統(實線),頻 11月1月1月1月1月1月1月1月1日1月1日1月1日1月1日1日1日1日1日	域量測糸統 (點狀)	線) 天主は王 日には())	
	水半切面,同極化(貫線),	交义極化(點狀線).	74 圖6.7章	垂直切面,同極化(實緣	剧,交义極化(第二十二月20
新状線) /5 圖(南立 トレンケ	5.8 水平切面不同深度的電	影场强度之大小分佈	····/5		深度的電場強
度之大小分佈		10 深度的電場强度	之相位分佈	/6 圖6.11 垂重	1111111111111111111111111111111111111
度的電場強度之相位分佈	」......// 圖6.12 〕 -	意頻喇叭大線仕近場	重測場型 離見測の時期間で	····// [■6.13 新技術
重測寬頻喇叭大線場型. 見測窗時間以工始5.445		8 圖6.14 傳統 医 場	離重測竟頻喇叭ス	、線场型	· · /8 圖6.15
重測寬頻喇叭大線E-plan	8场型和个问测试场之比群	父./9 圖b.16 重測竟 	,	Ne场型和个问測試场。	と比較.79
圖6.17 DBS(60CM)仕近场;	重測场型	80 圖6	0.18 新技術重測Dt	35(60CM)场型 50工编U.u.u.u.相到f	•••••
80 圖6.19 至外退场	δ重測DBS(60CM)场型.. Σωματώτωα		. 81 圖6.20 重測D	BS大線H-plane场型和	山个问之重測
场之比戦81 圖6.21 (assegrain大線(25cm)仕近	汤重测场型 工始	82 画6.22ま	新技術重測Ka頻段Ca	issegrain
LIVID3天緑场型	oz 阃0.23 重測しassegrain; ac ou 早測Connersin工始	て緑E-piane场空和个 リ plana提刊のて回り) 回重測场之 に 戦 三測想 うい 款		
· · · · · · · · · · · · · · · · · · ·	ョロ.24 里/凯Uassegrain大級 タ ᆂ2 4 III 総約六ビウモコ	□-plane场空和个问重 = 姮崗兴	里側场之比戦	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·
........83 衣日載 兴	* 衣2.1 形愛則之反射囲ス	、郯垣血・・・・・ 「エ伯ンム七九寅四月	・・・・・・・・・ 急油 ウトレ 赤	. 31 衣2.2 形愛俊之	火 別 山大緑省 4 夕池古工始
回 · · · · · · · · · · · · · · · · · · ·	・・・・、、 衣Z.3 多波衆 、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.人脉之刀们仅員除国 主4 1 \/c A T =n =1 +1 +1	L:111111111111111111111111111111111111		+ 夕
と刀 忉 	(32 1	ਲ਼4.T VSAT設計規格	兴員际重測歸洲。		00

參考文獻

D.C. Chang, "ANTENNA ENGINEERING" Da Yeh University. September 2002.
M. Fujimoto; D.M. Harrison; A. Louzir; C. Howson; C. Guo; J.P. Grimm; G. Tabor; G.M. Maier; "A DBS antenna-receiver system for

simultaneous multi-satellite reception " Consumer Electronics, IEEE Transaction on, Volume: 38 Issue: 3, Aug 1992 pp.394~397. [3] F. Kira; N. Honma; K. Cho; H. Mizuno; " Modified multi-focal paraboloid design for high aperture efficiency multibeam reflector antenna ", Antennas and Propagation Society International Symposium, 2002. IEEE, Volume: 1, 2002 pp.662~665 vol.1 [4] B. Saka; E. Yazgan; " Pattern optimization of a reflector antenna With planar-array feeds and cluster feeds ", Antennas and Propagation, IEEE Transactions on, Volume: 45 Issue: 1, Jan 1997 pp.93~97 [5] M. Lisi; " Antenna technologies for multimedia mobile satellite communications ", Antennas and Propagation, 2001. Eleventh International Conference on (IEE Conf. Publ. No. 480), Volume: 1, 2001 pp.241~245 vol.1 [6] H.H. Viskum; K. Tjonneland; " A study on the isolation capability of multi-beam reflector antennas ", Antennas and Propagation Society International Symposium, 1995. AP-S. Digest, Volume: 1, 18-23 Jun 1995 pp.136~139 vol.1 [7] W.R Dong; Jing Yang; X.F. Lu; " Analysis and improvement of performances of a multibeam antenna with large displaced feed ", Microwave Conference Proceedings, 1997. APMC '97, 1997 Asia-Pacific, 2-5 Dec 1997 pp. 633~636 vol.2 [8] C. A. Balanis; " Antenna Theory Analysis and Design Second Edition ", 1997 ".

[9] M.G.C. Branco; E. Abud Filho; L.C. da Silva; "Wide flare angle Ku band axially corrugated horn for offset VSAT antennas", Microwave and Optoelectronics Conference, 1995. Proceedings, SBMO/IEEE MTT-S international, Volume: 2, 24-27 July 1995 Pages: 15 - 619 vol.2 [10]
E.S. Gillespie, D.W. Hess, and C.F. Stubenrauch, "Antenna measurements: a comparison of far-field, compact range and near-field techniques," Proceeding of 1994 Conference in Precision Electromagnetic Measurements, pp.375, June 1994.

[11] M.S.A. Sanda and L. Shafal, " Dual parabolic cylindrical reflectors employed as a compact range, " IEEE Trans. On Antenna and Propagation, Vol. 38, No. 8, pp.812~814, August 1996.

[12] D.C. Chang, C.C. Yang, and S.Y. Yang, "Dual-reflector system with a spherical main reflector and shaped subreflector for compact range, "IEE Proceedings - Microwave, Antennas, and Propagation, Vol. 144, No. 2, pp.97~102, April 1997.

[13] J.P. McKay and Y. Rahmat-Samii, "Quiet zone evaluation of serrated compact range reflectors," Proceedings of 1990 IEEE International Symposium on APS/URSI, Vol. 4, pp. 232~235, May 1990.

[14] T.H. Lee and W.D. Burnside, "Performance trade-off between serrated edge and blended rolled edge compact range reflectors," IEEE Trans. on Antenna and Propagation, pp.87~96, January 1996.

[15] I.J. Gupta, K.P. Erickson, and W.D. Burnside, "A method to design blended rolled edges for compact range reflectors," IEEE Trans. on Antenna and Propagation, pp.853~861, January 1990.

[16] M.S.A. Mahmoud, T.H Lee, and W.D. Burnside, "Enhanced compact range reflector concept using an R-card fence: two-dimensional case,"
IEEE Trans. on Antenna and Propagation, pp.419~428, March 2001.

[17] R. V. De Jongh, M. Hajian, and L. P. Ligthart, "Antenna time domain measurement techniques," IEEE Trans. on Antenna and Propagation, pp.7~11, October 1997.

[18] J. Marti-Canales, "Time domain antenna measurements in compact ranges and small anechoic chambers," Ph.D. dissertation, Tech. Univ. Delft, the Netherlands, 2000.

[19] J. Marti-Canales, L.P. Ligthart, and A.G. Roederer, "Performance analysis of a compact range in the time domain," IEEE Trans. on Antenna and Propagation, pp.511~516, April 2002.