CuPc-C60 有機光電元件之製作與特性研究

沈師宇、王立民

E-mail: 9511061@mail.dyu.edu.tw

摘要

本實驗主要以熱蒸鍍方式於已鍍有氧化銦錫 (Indium Tin Oxide, ITO) 之導電玻璃上, 在壓力10?{5 torr以下成長有機材料薄 膜,用以製作有機太陽能電池元件(organic solar cell,OSC)。所使用的材料為CuPc(Copper phthalocyanine)與C60,另外搭 配BCP(Bathocuproine)做為激子障壘層(Exciton-blocking layer),主要以CuPc/C60雙層為基礎結構,加入CuPc:C60混合層、BCP激子障壘層,探討CuPc與C60不同之厚度以及改變CuPc:C60混合層比例對能量轉換效率(power conversion efficiency,)之影響。利用X-ray繞射儀,由繞射峰的位置初步鑑定所得有機薄膜結構與晶粒大小,以確定是否有其蒸鍍上之有機薄膜,並利用能量散佈分析儀(Energy Dispersive Spectrometer, EDS)鑑定CuPc與C60混合層比例,另外使用HP 4155A 半導體參數分析儀 (Semiconductor Parameter Analyzer) 進行I-V特性曲線量測,並求出有機太陽能電池能量轉換效率。我們 在實驗中首先探討以CuPc/C60有機太陽能電池之結構,其CuPc與C60最佳厚度分別為300 A與400 A,對於具混合層之最佳 厚度為500 A。加入BCP激子障壘層之OSC,我們發現BCP層厚度為100 A時,具有較高之,其?I 0.2%。此外我們發現 混合層之CuPc與C60之分子莫耳數比為CuPc:C60 = 1:2.2時,具有較佳之,其?I 0.26%,且具有開路電壓Voc = 0.42 V、短路電流Isc = 1.19 mA,且其串聯電阻?I 4.25 k,最後我們發現元件之串聯電阻愈小,其能量轉換效率,愈高,此結果說明串聯電阻之大小,確實影響能量轉換效率,因此降低其串聯電阻是極具相當重要之因素。

關鍵詞: 有機太陽能電池, CuPc, C60, BCP, 能量轉換效率

目錄

目錄 封面內頁 簽名頁 授權書............	
.............iv 英文摘要......vi 誌謝.......
..................vii 目錄...	ix 圖目錄.
	表目錄...........................
.xiv 第一章 緒論 1.1太陽能電池發展之現況.....	11.1.1 太陽光譜
.11.1.2 無機太陽能電池	.1.3 有機太陽能電池..............8 1.1.4 有機材
料之介紹	太陽能電池之發展
	15 第二章 有機太陽能電池之原理
2.1 有機太陽能電池之供電原理	.2 有機太陽電池之等效電路............18 2.3 有機
太陽能電池之光電轉換特性202.3.1 短路	電流20 2.3.2 開路電壓 ..
.............20 2.3.3 填充因子	
22 2.4有機太陽能電池之串聯電阻	23 第三章 實驗方法與實驗儀器 3.1 研究架構
33 3.3.3 有機材料CuPc/C60薄膜元件之成長	.33 3.3.4 鋁塊之清洗36 3.3.5
金屬電極之成長	則儀器..................38 3.4.1薄膜厚度量測
.............38 3.4.2 X-ray繞射儀...	40 3.4.3 I-V曲線之光電特性量測
41 3.4.4 能量散佈分析儀	.43 第四章 結果與討論 4.1 有機薄膜之晶格鑑定......
45 4.2 CuPc與C60混合層比例之分析48 4.3 有機太陽能電池薄膜之I-V特性曲線分析..
.50 4.3.1 CuPc/C60有機太陽能電池結構之I-V特性..51	4.3.2 CuPc/CuPc:C60/C60有機太陽能電池結構之I-V 特性 .
	≿:C60有機太陽能電池結構之I-V特 性..............
	影能電池結構之I-V 特性.....................
. 59 4.3.5 改變CuPc:C60混合層比例之I-V特性 62 4.4	4 電學特性之計算64 第五章 結
論	考文獻
圖目錄 圖1-1. 空氣質量(Air Mass,AM)示意圖.....2 圖1-2. 太陽光譜圖.............
.......3 圖1-3. CuPc分子結構圖	
...........12 圖1-5. BCP分子結構圖...	
ITO/CuPc/C60/BCP/AI有機太陽能電池之薄膜結構圖 .	. 15 圖2-1. ITO/CuPc/C60/AI有機太陽能電池之薄膜能帶圖 .

18 圖2-2. ITO/CuPc/C60/BCP/AI有機太陽能電池之薄膜能帶圖18 圖2-3. 有機太陽能電池之等效電路
.........19 圖2-4. 有機太陽能電池未受光之I-V特性曲線圖.......22 圖2-5. 有機太陽能電池受光之I-V
特性曲線圖.......23 圖3-1. 研究架構圖.................................
........................28 圖3-3. 蒸鍍系統圖31 圖3-4. 蒸鍍腔
體內部實體圖
四種有機太陽能電池之結構示意圖38 圖3-7. -step 膜厚量測儀..................................
.39 圖3-8. -step 量測示意圖.................39 圖3-9. X-ray繞射儀
.....40 圖3-10. 半導體參數分析儀.................42 圖3-11. 入射光功率量測示意圖....
.........42 圖3-12. I-V特性曲線量測示意圖................43 圖3-13. 能量散佈分析儀..
...............44 圖4-1. CuPc之XRD繞射圖........................46 圖4-2. ITO玻璃
之XRD繞射圖
C60之XRD繞射圖.................48 圖4-5. CuPc : C60混合層元素比例圖...........
.49 圖4-6. CuPc/C60未受光之I-V 特性曲線圖.........52 圖4-7. CuPc/C60受光之I-V 特性曲線圖....
......53 圖4-8. CuPc/CuPc:C60/C60受光之I-V 特性曲線圖......56 圖4-9. CuPc/CuPc:C60受光之I-V
特性曲線圖58 圖4-10. CuPc/CuPc:C60/BCP受光之I-V特性曲線圖.....61 圖4-11. CuPc/CuPc
:C60/BCP不同混合層比例受光之I-V特性曲 線圖
結構之Cell 1-2關係圖..........64 圖4-13. CuPc/CuPc:C60/C60結構之Cell 6關係圖......65 圖4-14.
CuPc/CuPc:C60結構之Cell 11關係圖.......66 圖4-15. CuPc/CuPc:C60/BCP結構之Cell 16關係圖....
.67 圖4-16. CuPc/CuPc:C60 (1:2.2)/BCP結構之Cell 20關係圖..68 圖4-17. 能量轉換效率與串聯電阻之關係圖...
能量轉換效率.......4 表3-1. 蝕刻參數表...........................33 表4-1. 電極電流與CuPc
:C60之混合比例.........49 表4-2. CuPc/C60結構與成長條件...............51 表4-3.
CuPc/C60結構元件最佳參數表...........51 表4-4. CuPc/CuPc:C60/C60 結構與成長條件......
...54 表4-5. CuPc/CuPc:C60/C60結構元件最佳參數表......54 表4-6. CuPc/CuPc:C60結構與成長條件.
.........57 表4-7. CuPc/CuPc:C60結構元件最佳參數表........57 表4-8. CuPc/CuPc
:C60/BCP結構與成長條件59 表4-9. CuPc/CuPc:C60/BCP結構元件最佳參數表60
表4-10. CuPc: C60混合層不同比例之成長條件 62 表4-11. CuPc: C60混合層不同比例之最佳參數表
62

參考文獻

參考文獻 [1] T. Markvart, Solar Electricity, P8~P9、P42, 1994.

[2]國立交通大學電子物理系博士論文, "GaNAs材料磊晶成長與AIAs濕氧化膜之研究", 2001.

[3] Teaching the physical principles of photovoltaics or Solar cell as a quantum converter, Tom Markvart.

[4] D.M. Chapin, C.S. Fuller, G.L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys. 25, 676, 1954.

[5]國立成功大學電機工程研究所碩士論文, "多功能單相三線式光 伏能量轉換系統之研究", 1998.

[6] R. Woodyard and G.A. Camdoes, Solar Cells, 31(1991),297.

[7] N.Chu and D.Honemam, Solar Cells, 31 (1991) 197.

[8] Ramanathan, K., et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 Thin-film solar cell. Prog. Photovolt: Res. Appl.,2003. 11: p. 225-230.

[9] V. Y. Merritt. and H. J. Hovel, "Organic solar cell of hydroxy squarylium", Appl. Phys. Lett., 29, 414, 1976.

[10] C. W. Tang, "Two-layer organic photovoltaic cell ", Appl. Phys. Lett. 48, 183, 1986.

[11] P. Peumans, V. Bulovic, and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes", Appl. Phys. Lett. 76, 2650, 2000.

[12] P. Peumans, and S. R. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells", Appl. Phys. Lett., 79, 126, 2001.

[13] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, "4.2% efficient organic photovoltaic cells with low series resistances", Appl. Phys. Lett., 84, 3013, 2004.

[14] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85, 2003.

[15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Lisja, N.Vlachopoulos, M. Gratzel, "Conversion of Light to Electricity by cis-X2Bis(2,2 – bipyridy1-4,4 -dicarboxylate)ruthenium (Charge-Transfer Sensitizers (X=CI-,Br-,I-,CN-,and SCN-) on Nanocrystalline TiO2 Electrodes", J. Am. Chem. Soc, 115, 6382, 1993.

[16] Sung Woo Hur, Hyun Seok Oh, Yong Cheul Oh, Dong Hoe Chung, Joon Ung Lee, Jong Wook Park, and Tan Kim, Synthetic Metals 154 (2005) 49-52.

[17] "上海化工半月刊", 劉佩華, 田禾, 第11期, 1999 [18] C. M. Joseph, K. N. Narayanan Unni, C. S. Menon, "Mater. Letts.", 50 (2001) 18-20.

[19] Masahiro Hiramoto, Hiroyuki Kumaoka, Masaaki Yokoyama, "Synthetic Metals", 91 (1997) 77-79.

[20] Z. G. Ji, K. W. Wong, P. K. Tse, R. W. M. Kwok, W. M. Lau, Thin Solid Films ",402 (2002) 79-82.

[21] J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang, A. Padias, S.

Thayumanavan , S. Barlow, S. R. Marder, G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R.M. Wightman, N. R. Armstrong, J. Am. Chem. Soc., 120, (1998) 9646.

[22] A. B Djurisic, C. Y Kwong and P. C. Chui, W. K. Chan, "Journal Of Applied Physics", 93, (2003) 5472.

[23] Soichi Uchida, Jiangeng Xue, Barry P. Rand, and Stephen R. Forrest "Applied Physics Letters", 84, (2004) 4218.

[24] H. Hoppe et al., J. Mater. Res. 19, 1924 (2004).

[25] 王文義,林怡君,"高分子太陽能電池技術",工業材料。203, 156, 2003.

[26] 國立交通大學電子物理系博士論文, "GaNAs材料磊晶成長與AIAs濕氧化膜之研究", 2001.

[27] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, J. D. MacKenzie, "Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics", Science 293 10 (2001) 1119.

[28] Holger Spanggaard*, Frederik C. Krebs, "A brief history of the development of organic and polymeric photovoltaics", Solar Energy Materials & Solar Cells 83 (2004) 125-146.

[29] Stefan A. and Andreia M. "Electrical Properties of The ITO/CuPc/(CuPc+TpyP)/TpyP/AI Cells", IEEE Trans. Appl. Sup. 76900(1997) and IEEE Trans. Appl. Sup. 72996 (1997).

[30] S. Antohe, L. Ion, N. Tomozeiu, T. Stoica, E. Barna., "Sol. Energy Mater. & Sol. Cells ", 62 (2000) 207-216.

[31] 大葉大學電機工程研究所碩士論文,"有機太陽能電池之成長與光電特性之研究", 2004.

[32] Jiangeng Xue, Barry P. Rand, Soichi Uchida, and Stephen R. Forrest, " A Hybrid Planar-Maxed Molecular Heterojunction Photovoltaic Cell ", Advanced Materials. 10, 1002, 2004.

[33] G. Sanon, R. Rup, A. Mansingh, Thin Solid Films, 190 (1990) 287.

[34] L. Sagalowicz, G. R. Fox, J. Mater. Res., Vol. 14, No. 5 (1999) 1876.

[35] S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84, 4218.

[36] Peter Peumans, Aharon Yakimov, and Stephen R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cell", Appl. Phys. Lett. 2003, 93, 3693.