
Designing of Image Compression Memory Hierarchy for Embedded System

施嘉政、王欣平

E-mail: 9509668@mail.dyu.edu.tw

ABSTRACT

Designing of modern computers’ micro-architecture relies on dynamic instruction traces for design optimization. However,

dynamic instruction traces often generates massive data that make the traces difficult to analysis and process. This thesis propose a

novel dynamic instruction traces profiling framework and a profiling algorithm that named as Melting in mining of the most frequent

and longest instruction sequence. The profiling framework is exemplified by designing of memory hierarchy for JPEG image

compression algorithm. The proposed profiling framework combines both the merits of traditional functional profiling and modern

instruction traces schemes. The framework is divided into to two steps. The target program is first profiled using function level

profiler that the most frequent function is determined. The derived function is simulated using the SimpleScalar/ARM 4.0 simulator

where dynamic instruction traces is generated. As result, the amount of traces data is greatly reduced. Finally, having the traces

obtained, the Melting Algorithm is applied to mine the most frequent and longest consecutive instruction sequence. The mined

sequence is applied to optimized memory hierarch. The sequence can also be applied in instruction compression and other

micro-architecture design issues.

Keywords : Data mining ; Cache design ; SimpleScalar ; JPEG ; ARM

Table of Contents

第一章 緒論 1.1 簡介 1.2 研究動機與目的 1.3 論文架構 第二章 相關文獻探討與相關研究背景知識 2.1 文獻探討 2.2 JPEG原

理介紹 2.2.1 離散餘弦轉換 2.2.2 量化 2.2.3 編碼 第三章 SimpleScalar與發展平台介紹 3.1 SimpleScalar介紹 3.2 發展平台 3.3

ARM Cross Compiler建立及演算法開發工具 3.4 測試軟體介紹 第四章 研究方法與演算法原理 4.1 研究方法與實驗步驟 4.1.1

Compilation 4.1.2 Profiling 4.1.3 Tracing 4.1.4 Analysis 4.2 Melting演算法原理 第五章 實驗結果分析與討論 5.1 Melting演算法

分析結果與驗證 5.2 快取記憶體設計分析 5.2.1 指令快取記憶體 5.2.2 資料快取記憶體 第六章 結論 參考文獻

REFERENCES

[1] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”, CACM, Vol.34, No.4, pp.31-44, 1991.�

[2] ITU/CCITT, Recommendation T.81, Digital compression and coding of continuous-tone still images, September. 1992.�

[3] K. Karuri, M. Faruque, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr, “Fine-grained Application Source Code Profiling for ASIP Design

”, In 42nd Design Automation Conference, pp.329-334, June 2005 [4] T. Ball, “Efficiently Counting Program Events with Support for on-line

Queries”, ACM Transactions on Programming Languages and Systems, September. 1994.�

[5] T. Ball, J. R. Larus, “Optimally Profiling and Tracing Programs”, ACM Transactions on Programming Languages and Systems, Volume 16,

Issue4, pp.1319-1360, July 1994.�

[6] J. R. Larus, “Whole Program Paths”, Proceedings of the SIGPLAN 99 Conference on Programming Languages Design and

Implementation(PLDI 99), May 1999, Atlanta Georgia.�

[7] Erez Perelman, Trishul M. Chilimbi, Brad Calder, Variational Path Profiling, Proceeding of the International Conference on Parallel

Architectures and Compilation Techniques(PACT), September. 2005.�

[8] W.-C. Hsu, J. Lu, P.-C. Yew, D. Chen, “Dynamic trace selection using performance monitoring hardware sampling”, International

Symposium on Code Generation and Optimization, pp.79-90, March 2003.�

[9] B. Cmelik, “SpixTools Introduction and User’s Manual”, Technical Report SMLI TR-93-6, Sun Microsystems Laboratory, Mountain

View, CA, February. 1993.�

[10] A. Srivastava and A. Eustace, “ATOM: A system for building customized program analysis tools”, In ACM conference on Programming

Language Design and Implementation, pp.196-205, Orlando, FL, June 1994.�

[11] L. Benini, F. Menichelli, M. Olivieri, “A class of code compression schemes for reducing power consumption in embedded microprocessor

systems”, IEEE Transactions on Computers, Volume 53, Issue 4, pp.467-482. April 2004.�

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown. Mibench, A free, “commercially representative

embedded benchmark suite”, In Proceedings of the IEEE 4th Annual Workshop on Workload Characterization, 2001.�

[13] Mibench Benchmark, http://www.eecs.umich.edu/mibench/.�

[14] SimpleScalar Version 4.0 , http://www.simplescalar.com/ [15] T.-C. Chiueh and P. Pradhan, “Cache memory design for network

processors“, High-Performance Computer Architecture, pp.409-418, 2000.�

[16] P. Stefan, K. Dhireesha, and J. Eugene, “Cache performance of video computation workloads ”, Digital and Computational Video,

pp.169-175, 2002.�

[17] Dinesh C. Suresh, Frank Vahid, Greg Stitt, Jason R. Villarreal, and Walid A. Najjar, “Profiling tools for hardware/software partitioning of

embedded applications.” Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded systems,

pp.189-198, 2003.�

[18] A. J. Smith, “Cache memories”, ACM Computing Surveys 14, No.3, pp.473-530, 1982.�

[19] N. Linda and L. Jilia, “The Essentials of Computer Organization and Architecture”, Jones and Bartlett Publishers, Inc., 2003.�

[20] D. A. Patterson and J. L. Hennessy, “Computer Organization & Design”, Second edition, Morgan Kaufmann Publishers, San Francisco.�

[21] http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html [22] http://kprof.sourceforge.net/ [23] 楊智喬

，Xtensa可組態處理器及其應用（下），國家晶片系統設計中心。

