Using a Novel Lens Antenna to Apply to Multi-beams Antenna System

吳榮泰、張道治

E-mail: 9315072@mail.dyu.edu.tw

ABSTRACT

Generally, electromagnetic energy radiated to free space or received electromagnetic energy by free space; its propagation form is spherical wave or cylinder wave. According to spherical wave propagation characteristics, it will cause many phenomenons, as phase error or signal loss, if we made spherical wave or cylinder wave become to plane wave, it should be improved drawback as the foregoing, this is main purpose that to manufacture lens antenna in this paper. In this paper, the parallel-metal-sheet lens is presented and designed. It is demonstrated by experiments that the newly designed parallel-metal-sheet lens possesses the effect of increasing directive gain of feed antennas approximately by 5.6 dBi and correct phase error of feed antenna. But the metal of parallel-metal-sheet lens is aluminium, so improves its structure, is added the aluminums foil to and replaced the metal aluminum by the dragon of Poly Finally, using traditional Luneberg lens and parallel metal-sheet lens antenna to design the least novel lens antenna, as simulated and measured result, it prove the correct phase error of characteristics of novel lens antenna and traditional Luneberg lens are the same.

Keywords : Dielectric Constant ; Traditional Luneberg Lens ; Azimuth Half Power Beam Withes ; Parallel Metal-Sheet Lens Antenna ; Circular polarizer

目錄 封面內頁 簽名頁 授權書............................iii 中文摘要.........
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
..................vi 目錄................................. vii 圖目錄.
.xv 第一章 序論 1.1 研究動機1 1.2 內容簡介
...........1 1.3 研究方法.....................3 1.4 論文架構...
......................................
.......5 2.2 偶極天線設計.................5 2.3 角反射器天線設計..
............6 2.4 角反射器天線模擬結果............................. 5 第三章 透鏡天線理論分析與
設計模擬 3.1 簡介
.......11 3.2.1 傳統式Luneberg透鏡天線.......11 3.2.2 平行板式透鏡天
線..........14 3.2.3 新型透鏡天線....................................
比較...............17 3.3 平行板式透鏡天線設計...........18
3.3.1 簡介................18 3.3.2 平行板式透鏡天線設計流程......19
3.4 新型透鏡天線設計..................3.4.1 簡介..............
..20 3.4.2 新型透鏡天線設計.........20 3.5 極化波理論分析........
21 3.5.1 各種極化簡介
· · · · · · · · · · · · 22 3.5.3 線性極化與圓形極化之關係 · · · · · · 22 3.5.4 探討電場強
度與相位變化對軸比的影響24 3.6 圓形極化器設計原理
欄狀金屬板圓形極化器.......25 3.6.2 螺旋式圓形極化器設計流程......27 第四章 硬體
製作與量測分析 4.1 角反射器天線之量測探討.........64 4.2 平行板式透鏡天線量測探
討
天線量測探討.........65 第五章 結論 參考文獻.................................... 81 附
錄 已投稿之研討會論文及期刊.............83 f

Table of Contents

REFERENCES

[1]. John D. Kraus, Ronald J. Marhefka, Antennas for All Applications, 3rd Edition, Mc Graw Hill, 01 January 2002, pp.352~364 and pp.632~634.

[2]. Warren Stutzman L. and Gary Thiele A., "Antenna Theory and Design", John Wiley & Sons, 1981, pp.397~415. [3]. Rajeswari Chatterjee, "Antenna Theory and Practice", John Wiley & Sons, September 1988, pp.191~200. [4]. Constantine A. Balanis, Antenna Theory: Analysis and Design 2nd Edition, John Wiley & Sons, 29 May 1996, pp.786~793. [5]. R. K. Luneberg, "Mathematical Theory of Optics" Brown Univ, Graduate School, Providence, R. I.; 1944. [6]. Carlyle J. Sletten, Reflector and Lens Antennas: Analysis and Design Using Personal Computers, Artech House, December 1988, pp.306~310. [7]. Andrew D. Greenwood and Jian ---Ming Jin, "A Field picture of Wave Propagation in Inhomogeneous Dielectric Lenses," IEEE Transactions on Antennas and Propagation, Vol.41, No.5, October 1999, pp. 9~18. [8]. G. D. M. Peeler and D. H. Archer "A Two-dimensional Microwave Luneberg Lens," IRE Transactions on Antennas and Propagation, Vol. AP-1, July 1953, pp. 12-23. [9]. Hal Schrank, John Sanford, "A Luneberg Lens Undated," IEEE Transactions on Antennas and propagation, Vol.37, No. 1, February 1995, pp. 76~79. [10]. Haruo Sakurai, Takeshi Hashidate, Makoto Ohki, Kuniyuki Motojima, and Shogo Kozaki, " Electromagnetic Scattering by the Luneberg Lens with Reflecting Cap, " IEEE Transactions Electromagnetic Compatibility, Vol.40, No.2, May 1998, pp. 94~96. [11]. Kazuo Kikuchi, Member, IEEE, Yasuo Kido, and Takashi Ogawa, "Millimeter Wave Sensor Using Cylindrical Luneberg Lens with Flat Sides, "IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 2, April 1998, pp. 423~425. [12]. Dau-Chyrh Chang, "Design and Manufacture of Concave Lens Antenna", EMC Conference in Taiwan, October 2001, pp.167~171. [13] 廖肇賢, 2.4 GHz ISM波段凹透鏡天線設計與製作,碩士論文,大葉大學電機所,2001年6月 [14] 蔡錦堡,1.8 GHz 圓形極化基地台 天線設計,碩士論文,大葉大學電機所,2001年6月 [15] 陳志銘,平板式Luneberg Lens及圓形極化器設計及製作,碩士論文,大葉大學 電機所 , 2003年6月 圖目錄 圖2.1 偶極天線結構圖8 圖2.2 偶極天線之模擬結果........ 圖3.1 電磁波之傳播路徑...............29 圖3.2 傳統型式透鏡射線分佈(a).............29 圖3.3 傳 統型式透鏡射線分佈(b)..............30 圖3.4 圓球型介質層分佈圖....................30 圖3.5 介質層數 與直徑之效率關係.............31 圖3.6 饋入天線結構圖.......................31 圖3.7 饋入天線的方位 徑為4 之方位角33 圖3.11 傳統式Luneberg透鏡直徑為7 之方位角 統式Luneberg透鏡直徑為10 之結構圖 34 圖3.13 傳統式Luneberg透鏡直徑為10 之方位角 波束寬場型.... · · · · · · · · · · · · · · · · 35 圖3.14 比較4 、7 及10 的方位角波束寬場型 · · · · · · · 35 圖3.15 圓形波導角之結構圖 · · 39 圖3.22 平行板式透鏡天線Port2之方位角波束寬場型..... 39 圖3.23 平行板式透鏡天線Port3之結構.......... 圖3.26 平行板式透鏡天線Port4之方位角波束寬場型....41 圖3.27 平行板式透鏡天線Port5之結構圖........42 圖3.28 平 行板式透鏡天線Port5之方位角波束寬場型.....42 圖3.29 平行板式透鏡天線Port1至Port5之結構圖.....43 圖3.30 平行板式透鏡 天線Port1至Port5之方位角45 圖3.34 新型透鏡天線Port1方位角波束寬場型.....45 圖3.35 新型透鏡天線Port2結構圖............. . 46 圖3.36 新型透鏡天線Port2方位角波束寬場型......46 圖3.37 新型透鏡天線Port3結構圖.........47 圖3.38 新型透鏡天線Port3方位角波束寬場型.......47 圖3.39 新型透鏡天線Port4結構圖............48 圖3.40 新 型透鏡天線Port4方位角波束寬場型.......48 圖3.41 新型透鏡天線Port5結構圖............49 圖3.42 新型透鏡天 線Port5方位角波束寬場型.......49 圖3.43 新型透鏡天線結構圖.................50 圖3.44 新型透鏡天線方位 角波束寬場型..........50 圖3.45 饋入天線結構圖....................51 圖3.46 饋入天線方位角波束寬 波束寬場型.......52 圖3.49 橢圓長短軸表示圖...................53 圖3.50 AR、 關係圖.... · · · · · · · · · · · 53 圖3.51 正交分量圖 · · · · · · · · · · · · · · · · · · 54 圖3.52 柵欄狀圓形極化器結構圖 · · · · · · · · · · · · · 54 圖3.53 螺旋幾何結構圖 · · · · · · · · · · · · · · · 55 圖3.54 螺旋式圓形極化器結構圖 · · · · · · · 圖3.59 圓形極化透鏡天線Port2之方位角波束寬場型....58 圖3.60 圓形極化透鏡天線Port3結構圖..........58 圖3.61 圓

鏡天線Port4之方位角波束寬場型....60 圖3.64 圓形極化透鏡天線Port5結構圖...........60 圖3.65 圓形極化透鏡天
線Port5之方位角波束寬場型....61 圖3.66 圓形極化透鏡天線Port1至Port5之方位角 波束寬場型..............
.....61 圖3.67 圓形極化透鏡天線方位角波束寬場型......62 圖4.1 角反射器天線實體圖..........
...67 圖4.2 角反射器天線之相位場型...........67 圖4.3 角反射器天線於6 GHz之方位角波束寬場型....
.68 圖4.4 角反射器天線於6.5 GHz之方位角波束寬場型....68 圖4.5 角反射器天線於7 GHz之方位角波束寬場型.....69
圖4.6 比較饋入天線之方位角波束寬場型........69 圖4.7 平行板式透鏡天線實體圖..............70 圖4.8 平
行板式透鏡天線Port1相位場型....................................
鏡天線Port3相位場型...........71 圖4.11 平行板式透鏡天線Port4相位場型..........72 圖4.12 平行板式透鏡天
線Port5相位場型.........72 圖4.13 比較平行板式透鏡天線相位場型...........73 圖4.14 平行板式透鏡天線於6
GHz之方位角波束寬場型...73 圖4.15 平行板式透鏡天線於6.5 GHz之方位角波束寬場型.. 74 圖4.16 平行板式透鏡天線於7 GHz之
方位角波束寬場型... 74 圖4.17 平行板式透鏡天線之方位角波束寬場型......75 圖4.18 新型透鏡天線側視圖......
........75 圖4.19 新型透鏡天線俯視圖...............76 圖4.20 新型透鏡天線實體圖........
.......76 圖4.21 WR-430於2.45 GHz的相位場型.........77 圖4.22 新型透鏡天線於2.45 GHz的相位場型....
...77 圖4.23 未加極化器時所量測的軸比...........78 圖4.24 圓形極化器天線實體圖...........
.78 圖4.25 加上極化器後所量測的軸比................9 圖4.26 軸比比較.......................
表目錄 表1. 平行板式透鏡之半徑與介電係數..........63 表2. 平行板式透鏡之半徑與間距...........
.63 表3. 平行板透鏡天線與圓形極化透鏡天線的波束寬比較...63