背光模組及背光源之設計與模擬

鄭翔遠、韓斌:黃俊達

E-mail: 9314945@mail.dyu.edu.tw

摘要

本研究主要利用光學模擬軟體,模擬背光模組及背光源,分為2個方向,1.背光板入光側V型溝槽結構之光學的模擬與最佳化,2.微結構陣列應用於LED內部結構的模擬與最佳化。 1.背光板入光側V型溝槽結構之光學的模擬與最佳化,去探討目前液晶面板所使用的導光板入光側之結構,並了解光源耦合效率問題,使LED的光源出射後進入導光板的光場變大,並且檢視觀察面的光場分佈是否均勻。在此論文中我們提出使用V型溝槽作為導光板最前端的結構,以改善光源之分佈狀況,並以V型溝槽刻痕為70°、80°、90°、100°、110°和120°等角度及斜平比為1:0至1:5來進行模擬分析,以期得到最佳化的趨勢,進而完成光源的最佳分佈狀況。 2.模擬微結構陣列應用於LED內部結構的最佳化,發光二極體(LED)有著眾多的優點,但由於LED晶體內的外部量子效應無法突破,使其發光效率仍有改善空間。本篇論文主要在於探討藍寶石基板上加入微結構陣列對於提升LED發光元件外部量子效率的效果,以及其對於LED發光元件出光效率的影響,微結構陣列以圓錐體為模組,改變圓錐體的角度 y由60°、75°、90°及高度為0.5µm至2µm來進行模擬。模擬結果顯示,於藍寶石基板上做出微結構陣列,並選擇適當的角度及高度,可有效提升LED發光晶體的出光效率。

關鍵詞:光學模擬;V型溝槽;斜平比;微結構;藍寶石基板

目錄

封面內頁 簽名頁 授權書	iii	中文摘要
iv 英文摘要		v 誌謝
vii 目錄		viii 圖目錄
x 第	第一章 緒論	1 1.1 研究動
機11	.2研究方法與論文結構	2 第二章 光學基本
理論	4 2.1基本概念	4 2.2 平面界面的反
射和折射5 第三章	背光板入光側V型溝槽結構之光學	的模擬與最佳化11 3.1前言與簡介…
11 3.2 LEI	D光源及導光板結構說明	14 3.3 第一組模組模擬步驟
15 3.3.1 實驗結果	具與討論	17 3.3.2 第一模組結論
23 3.4 第二組模組LED光源及導光板	反結構說明24 3.5 第二組	模組模擬步驟
24 3.5.1 實驗結果與討論	25 3.5.2 第二模組結論	扁31 第
四章 微結構陣列應用於LED內部結構的模擬與	與最佳化33 4.1前言	
33 4.2模擬概述	35 4.3模擬設計和設定	Ē37
4.4模擬結果與討論	39 第五章 總結論	
46 參考文獻	48	

參考文獻

- [1] Yoshitaka Koyama, "Ray-Tracing Simulation in LCD Development ", May 18(2001).
- [2] C. S. Lin, W. Z. Wu, Y. L. Lay, M. W. chang, "A digital image-based measurement system for a LCD backlight module", Optics and Laser Technology 33,495-505(2001).
- [3] 葉金娟譯,"液晶的背光及其周邊技術-使液晶板高效率化和高輝度的導光板",電子月刊第三卷第一期115頁1997年 [4] 鮑友南、潘奕凱、姚柏宏、林建憲,"TV用液晶顯示器之背光模組技術",微機電技術專利,機械工業雜誌245期158頁2003年。
- [5] 施至柔 , "背光模組光學模擬技術", 交通大學光電工程研究所碩士論文, 民國87年。
- [6] 蘇紹安, "非印刷式背光模組光學模擬分析",中華大學電機研究所碩士論文,民國90 [7] ENDEL UIGA, "optoelectronics", Chapter 1-3, Prentice-Hall (1995).
- [8] 董德國、陳萬清 譯, " 光纖通訊 ",pp.65~97,台灣東華,民89 [9] Eugene Hecht, " Optics ",4th Edition, Chapter4、5、8,Addison Wesley 2002
- [10] 許招庸 編譯 , " 現代照明實務 " , pp.33-3~3-12 , 全華 , 民87 [11] 蘇怡玲、鍾明昌、魏茂國、林宏? , " 微透鏡陣列應用於有機元件之探計 " , 2004台灣顯示科技研討會第266頁。

[12] Y. P. Hsu, S. J. Chang, Y. K. Su, J. k. Sheu, C. T. LEE, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang, S. C. Shei, "Lateral epitaxial patterned sapphire InGaNGaN MQW LEDs, Journal of Crystal Growth 261 (2004) 466-470 [13] 劉彥泓,"奈米級電漿粗化在光電元件之應用",大葉大學電機工程研究所碩士論文、民國90