永磁式直流無刷馬達DSP Base伺服驅動器設計實務

蕭豐進、胡永柟: 陳盛基

E-mail: 9314895@mail.dyu.edu.tw

摘要

直流無刷馬達具有高轉矩、高功率密度等特性,經適當電子式換向,可使其有如直流有刷馬達般之高性能運轉特性,在伺服系統的應用上愈來愈受重視。本論文主要是以德州儀器公司所生產之TMS320F240數位訊號處理器(DSP)晶片為控制核心,從事於直流無刷馬達三相驅動電路及其控制器之研製,發展出一個數位式伺服驅動系統。在驅動電路方面,不採用任何公司所生產之驅動模組,完全自製,以達成架構簡單、成本低廉及性能優越之驅動器。在驅動方式方面,利用霍耳元件、編碼器及反電動勢輸出訊號之配合,完成六步方波PWM及弦波PWM二種電子驅動換向。在控制器方面,利用系統鑑別,找出系統轉移函數,以供設計PID控制器參數時之參考,完成無刷馬達速度、位置之控制。最後輔以Simulink軟體,模擬系統動態響應,並與實測波形相互比較,以驗証本論文內容之正確性。

關鍵詞 : 直流無刷馬達 ; TMS320F240數位訊號處理器 ; 霍耳元件 ; 反電動勢 ; 編碼器 ; 六步方波PWM ; 弦波PWM ; PID控制 器

目錄

簽名頁 授權書	iii 中文摘要	iv 英文摘要	v 誌
謝	vi 目錄	vii 圖目錄	x 表目
錄	xiv 第一章 序論xi	1 1.1 簡介	1 1.2 研究的步
驟	2 1.3 系統架構	3 1.4 內容大綱	7 第二章 直流無刷伺服馬
達介紹	8 2.1馬達基本類型	8 2.2 有刷式直流馬達	9 2.3.1 直流無刷馬
達	11 2.3.2 直流無刷馬達的特徵	13 2.4 霍耳元件	15 2.5 無刷直流馬達之
數學模式	17 2.6.1 座標轉換	22 2.6.2 二軸座標間的轉換	27 第三章 變頻器與脈
寬調變原理	29 3.1 三相方波變頻器	30 3.2 正弦波脈寬調變	42 第四章 直流
無刷馬達驅動器研製	·46 4.1 數位訊號處理器		動器49 4.2.1
功率電晶體的選擇	51 4.2.2 隔離電路	53 4.2.3 緩振電路	57 4.3 失效時
間產生器	60 4.4 電流回授電路	63 4.5 編碼器	66 第五章 模擬與實
驗結果	70 5.1 伺服馬達控制系統程式流	程70 5.1.1 PWM控制	74 5.1.2 電流
控制	76 5.1.3 向量控制	79 5.1.4 速度控制迴路	81 5.1.5 位置控制迴
路	33 5.2 實測結果8	83 5.3.1 PID控制器	91 5.3.2 系統鑑
別	95 5.3.3 PID參數設計	97 第六章 結論	107 參考文
獻	109		

參考文獻

參考文獻 [1]Duane C. Hanselman, "Brushless Permanent-Magnet Motor Design," McGraw-Hill,Inc1,1994.

- [2] N. Mohan, T. M. Undeland and W.P. Robins, "Power electronics converters, applications and design," John Wiley & Sons 1995.
- [3]TMS320F/C24x DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Number SPRU296, Texas Instrument, June 1999.
- [4] Code Composer User 's Guide, Number SPRU296, Texas Instrument, February 1999.
- [5]董勝源, "TMS320C240原理與C語言控制應用實習",長高科技圖書,2001.
- [6]黃繼震,"全數位化馬達控制參數自調適技術研究報告",經濟部科專計畫,2001.
- [7]廖聰明, "線性馬達高功率驅動器研製",國立清華大學, 1998.
- [8]劉昌煥,"交流電機控制-向量控制與直接轉矩控制原理",東華書局,2002.
- [9]施慶隆、李文猶,"機電整合控制-多軸運動設計與應用",全華圖書,2002.
- [10]劉昌煥、許溢適, "AC伺服系統的理論與設計實務 ",文笙書局,1990.
- [11]唐佩忠, "VHDL與數位邏輯設計 ",高立圖書,1999.
- [12]詹晉榮, "直流無刷馬達驅動系統實務設計",碩士論文,大葉大學電機研究所,2003.

- [13]曾世峰, "線性直流無刷馬達-自調式DSP控制器之設計",碩士論文,大葉大學電機研究所,2001.
- [14]歐宗勳,"全數位化線性馬達運動控制實務",碩士論文,大葉大學電機研究所,2002.
- [15]陳志成, " 無轉軸偵測元件之無刷直流馬達驅動系統研製 ", 碩士論文,國立中央大學電機研究所,2001.
- [16]林正浩, "三相感應電動機之DSP直接轉矩控制系統研製"碩士論文,國立台灣大學電機研究所,2001.
- [17]張富鈞, "線性馬達驅動系統之研製",碩士論文,逢甲大學自動控制工程研究所,2001.
- [18]陳鴻志,"以數位信號處理器為基礎之永磁式同步馬達驅動器設計與製作,"碩士論文,南台科技大學電機研究所,2001.。
- [19]王國龍,"線性永磁同步馬達驅動系統之設計及研製",碩士論文,國立臺灣科技大學(電機所),2001.6 [20]蔡華駿,"直流無刷馬達之變速率採樣控制器分析",國立台灣大學機械工程研究所碩士論文,指導教授:顏家鈺,1999.6.
- [21]李志暐,"現代控制法則於倒單擺系統之甩尚直立及定位控制之研究,"碩士論文,大葉大學電機研究所,2003.
- [22]許書賓, " 小型無刷直流馬達無感測器之驅動控制研究, " 碩士論文, 國立清華大學(動力機械工程研究所控制組), 1992.6.
- [23]B. K. Bose, "Power electronics and variable frequency drives: technology and applications," IEEE Press, New York, 1997.7.
- [24]史宗岳, "直接轉矩控制變頻器之研製,"碩士論文,國立台北科技大學(機電整合研究所),1998.6.
- [25]陳建和,"直接轉矩控制變頻器之低轉速控制,"碩士論文,國立台北科技大學(機電整合研究所),1999.6.
- [26]B. C. Kuo, Automatic Control System, Prentice-Hall, New Jersey, 1997.
- [27]D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, 1997.
- [28]范哲豪, "永磁無刷馬達之無感測控制器之研製",碩士論文,國立台北科技大學(機電整合研究所),2000.7.
- [29]林泰輝, "以DSP進行感應電動機滑差與轉速估測之研究",碩士論文,中正理工學院(電子工程研究所),1999.5.
- [30]吳南億,"以數位信號處理器為基礎之電動機車無刷馬達驅動器",碩士論文,國立中山大學電機工程學系,2001.7.
- [31]李昆岱,"應用DSP實現重覆控制於具非線性負載變流器之研究",碩士論文,國立成功大學(電機所),2000.5.