A performance evaluation of Hierarchical Link-Sharing with HTB and CBQ on Linux

何振毅、王欣平博士

E-mail: 9314761@mail.dyu.edu.tw

ABSTRACT

Network multimedia applications render packet transmission in more stringent requirements than before. Traditional guarantee of packet transmission along no longer suffices these real time multimedia application requirements. In these applications, packet has to be transmitted in a timely and even deterministic manner that often contradicts the nature of traditional packet based network. Quality of Service (QoS) is regarded as a solution to the above problem and IETF currently has proposed Interserve [1] and DiffServe [2] for the problem. While advanced commercial QoS solutions in general are still pending, Linux from Open Software Society has realized some of advanced QoS facilities in its design as edge node solution in particular. This thesis concerns the QoS design of the Link-sharing Queue in Linux. There are two Link-sharing Queue designs currently implemented in Linux, and they are Class Based Queuing (CBQ) by S. Floyd and V. Jacobson, and Hierarchical Token Bucket (HTB) by Martin Devera. CBQ has come to its existence for a while. It was fairly tested and a lot of related literatures regarding to its performance are available for referencing. CBQ has being criticized for its complexity that make it difficult to configure and less efficient [8, 12, 14]. In contrast, HTB on the other hand are quite new. It simplifies the complexity of CBQ and claimed by the origin designer to be more efficient than CBQ. Because HTB was developed just recently, related literatures about its performance are rarely seen. Still, the Open Source society regards HTB a replacement of CBQ. All considering, this thesis is setup to conducts a systematic comparison between performance of CBQ and HTB in an actual network environment. A Linux gateway equips with both CBQ and HTB is installed. A test platform was built that based on the above gateway with proper hardware arrangement and software configuration where CBQ and HTB are tested independently that under the same network environment. Consequently, test results are collected and are compared. The comparison is made with emphasizing on bandwidth guarantee, transmission latency, and delay jitter. In addition, the same comparison is extended with inclusion of scability that taken combination of different class numbers and levels into account. Generally speaking, the test shows HTB has better performance in bandwidth guarantee but minor deficiency in latency and delay jitter in comparing to CBQ. Full detail is covered in chapter 4 of this thesis.

Keywords : Link-Sharing ; Linux ; CBQ ; HTB

Table of Contents

目錄 封面內頁 簽名頁 授權書	iii 中文摘要		
v 英文摘要		vii 誌謝	
ix 目錄			x 圖目錄
хі	i 表目錄		xiv
第一章 緒論 1.1簡介	1 1.2研究	動機	
	3 第二章	相關研究背景 2.1 Linux Q	oS支援
4 2.1.1 Linux核心處理	網路封包的流程	4 2.1.2 Linux元件介紹	
		2.1何謂Link-Sharing	
10 2.2.2 Link-Sharing元件簡介	12 2.2.3 Link-Sharing Gu	uidelines	…14 2.3實
作Link-Sharing架構152	.3.1 CBQ簡介		3.2 CBQ的問
題17 2.3.3 HTB簡介		18 2.3.4 EWMA和TB演	寶法簡介
19 2.3.5 HTB和CBQ的差異	23 第三章 研究	了方法 3.1實驗環境和工具介	紹
27 3.2採用之研究方法與原因		29 第四章 實驗分析與討	論 4.1 HTB
和CBQ差異性的比較32 4.1.	1 HTB和CBQ對於分配頻	寬時的流量變化33 4.1.2	HTB新的功
能 限制每個類別的最大流量43 4.1.3 HTB和CBQ 優	先權定義的比較	45 4.1.4 HTB和CBQ在處	理不同大小
的封包時所花費的時間比較	49 4.1.5 HTB和(CBQ處理封包時所花費的時	間變化55 4.2
CBQ和HTB擴展性對於整體效能的影響6	↓4.2.1類別數增加對CBQ₹	和HTB整體效能的影響614	4.2.2層級數增
加對CBQ和HTB整體效能的影響65 第五章 結論		70 參考文	獻

REFERENCES

[1] R.Braden, D. Clark and S. Shenker, " Integrated Services in the Internet Architecture: an Overview, " RFC 1633, June 1994.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, "An Architecture for Differentiated Service, "RFC 2475, December 1998.
 [3] The Linux Kernel Archives, http://www.kernel.org/ [4] The Linux Home Page, http://www.linux.org/ [5] http://www.instat.com-The Broadband CPE Big Three: Residential Gateway, Modem and SOHO Router Market Analysis, The Broadband CPE Big Three: Residential Gateway, Modem and SOHO Router Market Analysis, The Broadband CPE Big Three: Residential Gateway, Modem and SOHO Router Market Analysis, October 2003.

[6] CalbeHome, http://www.cablelabs.com/projects/cablehome/ [7] DSL Forum, http://www.dslforum.org/ [8] S.Floyd and V. Jacobson, " Link-Sharing and Resource Management Models for Packet Networks," IEEE\slash ACM Transactions on Networking, 1995.

[9] Class-Based Queueing, http://www.icir.org/floyd/cbq.html [10] HTB Home, http://luxik.cdi.cz/~devik/qos/htb/ [11] S. Floyd, "Notes on Guaranteed Service in Resource Management," unpublished manuscript, March 1993.

[12] KJ.Loh, I.Gui and KC. Chua, "Performance of a Linux implementation of class based queuing, "in Proc. 7th Int. Computer Communications and Networks, Oct. 1998, Page(s):370 — 377.

[13] S. Floyd, " Notes on CBQ and Guaranteed Service, " Draft document, July 1995.

[14] S. Floyd, " Notes on the relationship between CBQ and RSVP, " Draft note, October 1997.

[15] S. Floyd, " Notes on class-based queuing: Setting parameters, " Unpublished draft, July 1995.

[16] The Linux Document Project, http://www.linuxfaq.com/LDP/ [17] Linux Advanced Routing and Traffic Control, http://lartc.org/ [18]
Puqi Perry Tang and Tai, T.-Y.C. "Network traffic characterization using token bucket model, "INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Volume: 1, 21-25 March 1999, Pages:51 - 62 vol.1.
[19] Iproute2, http://snafu.freedom.org/linux2.2/iproute-notes.html [20] S. Floyd and V. Jacobson, "Random early detection gateways for congestion avoidance, "Networking, IEEE/ACM Transactions on, Volume: 1, Issue: 4, Aug. 1993, Pages:397 — 413.

[21] P.E. McKenney, "Stochastic fairness queueing, "INFOCOM '90. Ninth Annual Joint Conference of the IEEE Computer and

Communication Societies. 'The Multiple Facets of Integration'. Proceedings, IEEE , 3-7 June 1990 , Pages: 733 - 740 vol.2 .

[22] E. Hahne, "Round Robin scheduling for fair flow control," Ph.D. thesis, Dept. Elect. Eng. And Computer. Sci., M.I.T., Dec. 1986. [23] M. Shreedhar and G. Varghese, "Efficient fair queuing using deficit round-robin," Networking, IEEE/ACM Transactions on, Volume:4 Issue:3, June 1996, Page(s):375-385.

[24] V. Jacobson, "Congestion Avoidance and Control," in Proc. SIGCOMM '88, August 1988, pp. 314-329.

[25] Y. Bernet ,S. Blake D. Grossman ,A. Smith , " An Informal Management Model for Diffserv Routers, " RFC 3290, May 2002.

[26] P. Young, "Recursive estimation and time-series analysis," pringer-Verlag, 1984.

[27] Fulvio Risso and Panos Gevros, "Operational and Performance Issues of a CBQ router, "ACM Computer Communication Review, Vol.29 No 5, October 1999.

[28] S. Shenker , C. Partridge and R. Guerin , " Specification of Guaranteed Quality of Service, " RFC 2212, September 1997.

[29] IPERF, http://dast.nlanr.net/Projects/Iperf/ [30] TCPDUMP, http://www.tcpdump.org/ [31] TCPTRACE,

http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html [32] GNUPLOT, http://www.gnuplot.info/ [33] TRPR,

http://proteantools.pf.itd.nrl.navy.mil/trpr.html [34] PERL, http://www.perl.com [35] Steven,W. Richard. "TCP/IP ILLUSTRATED VOL .1: the Protocols ".MA:Addison-Wesley,1994.

[36] H.Schulzrinne, S. Casner, R. Frederick, and V.Jacobson, "RTP:A Transport Protocol for Real-Time Applications, "RFC 3550, July 2003.