適用於802.11之低雜訊四相位輸出壓控振盪器

莊煒琦、許崇宜;洪進華

E-mail: 9223664@mail.dyu.edu.tw

摘要

本論文乃是使用台積電TSMC 0.25um CMOS 1P5M製程來實現一個具有四相位正交輸出應用於無線通訊網路802.11a的壓 控振盪器(voltage-controlled oscillator),該電路的四個輸出相位分別為90°、180°、270°和360°。本電路於模擬時其相位 雜訊 (phase noise) 在距離振盪中心頻率3MHz處可達到-130.2 dBc/Hz,可調振盪頻率範為4.833GHz~5.623GHz,調頻範圍 (tuning range)為0.79GHz約為中心頻率之15.2%,輸出功率為-7.67dBm、消耗功率為15.8mw,pushing 測式vdd為2.3v、2.4v 、2.5v、2.6v、2.7v、2.8v,振盪頻率偏移量最大為主頻率之1.394%,pulling 的測試loading為25歐姆、50歐姆、75歐姆、100歐姆,振盪頻率的偏移量幾乎為0,輸出阻抗匹配約在50歐姆左右。

關鍵詞: 壓控震盪器; 低雜訊; 相位雜訊; 四相位

目錄

目錄 封面內頁 簽名頁 授權書	iii 中文摘要
iv 英文摘要	
vi 目錄	viii 圖目錄
x 表目鋒	₹xv 第一章 緒論
1	1.1 動機1 1.2 802.11
簡介21	.3 四項位壓控振盪器簡介5 第二章 壓控
振盪器6	32.1 基本LC振盪器之振盪原理7 2.2
Accumulation-mode MOSFET varactor and plane-spire	al inductor10 2.2.1
Accumulation-mode MOSFET varactor10	2.2.1.1 Accumulation-mode MOSFET之trade-off特性
14 2.2.2 平面螺旋電感(Plane-	Spiral Inductor)15 2.2.2.1 電感量的估計方法
16 2.3 LC Tank VCO	17 2.3.1 被動電路LC Tank
…17 2.3.2 主動電路cross-coupled transistors	19 2.3.3 LC Tank VCO circuit
輸出壓控振盪器252.5	5 Phase noise 對VCO (Voltage-Controlled Oscillator)的影響
	器phase noise model
注入共振的LC並聯電路所造成的相位偏差	51 第三章 鎖相迴路
54 3.1 相位頻率偵測器	髻54 3.2 Charge pump及 low pas
filter60 第四章 VCO模擬結	課和晶片之實現67 4.1 CMOS differential
VCO電路模擬67 4.2 四相位輸出	壓控振盪器之模擬
	(CO 之模擬82 4.5 四相位壓控振盪器之量測
87 第五章 結論和未來展望	91 附錄A
94 Reference	
段圖	S內跳頻不停的切換到各個階段3 圖1.3 DSSS將每
個1與0位元以Chip Sequence加以編碼4 圖2.1 區	『控振盪器之方塊圖6 圖2.2 理想之壓
控振盪器輸入輸出關係圖7 圖2	2.3 迴授系統示意圖8 圖2.4 電路
只會對w=w0之訊號放大	8 圖2.5 基本振盪器架構9 圖2.6
當R1=-R2時電路就可發生振盪9	圖2.7 PN junction varactor 的剖面圖11 圖2.8
MOSFET varactor之C-V特性曲線	12 圖2.9 Accumulation-mode MOSFET varactor之剖面圖12
圖2.10 當Vgs為負時,則空乏區加大	13 圖2.11 當Vgs為正時,則空乏區減小
13 圖2.12 Accumulation-mode MOSFET varactor	·之C-V特性曲線圖…14 圖2.13 Accumulation-mode MOSFET varactor通
道之等效電阻圖15 圖2.14 矩型螺旋電感	16 圖2.15(a) 理想的LC Tank電路
18 圖2.15(b) 實際的LC Tar	ık電路18 圖2.16 LC Tank其阻抗的大小
及相位對頻率的關係圖19 圖2.17 PMOS Cr	oss-couple所構成之主動電路圖20 圖2.18 cross-coupled
PMOS之小訊號模型20 圖2.19 (CMOS Differential VCO電路圖23 圖2.20 NMOS
differential VCO24 圖	2.21 PMOS Cross couple VCO without tail current source25 圖2.22 四

相位輸出壓控振盪器	圖2.23 Source follower之輸出-輸入關係圖
圖2.24(a) M5~M8連接成Ring的型式	28 圖2.24(b) 將Ring電路之等效電容和電阻萃取出來
28 圖2.25 gain error示意圖	31 圖2.26 Phase error示意圖
	圖
33 圖2.29 由phase noise所造成的I/Q mist	match
34 圖2.30(b) 實際之壓控振盪器之降	頻
35 圖2.32 振盪器的noise shaping]圖
40 圖2.34 Lesson's 相位新	訊模型42 圖2.35 當雜訊發生在振盪訊
號的波峰時43 圖2.36 當雜訊發生	在zero crossing時
之輸入雜訊對相位誤差關係圖45 圖2.38 Vout	(t)之頻譜圖47 圖2.39 相位雜
訊形成示意圖50 圖2.	40 模擬雜訊注入LC Tank之模型圖51 圖3.1 PLL
之方塊圖54	圖3.2(a) 相位偵測器之方塊圖55
圖3.2(b) 理想之相位偵測器輸入輸出曲線	55 圖 3.3 XOR之邏輯閘
55 圖3.4 XOR之輸出輸入關係圖	56 圖3.5 增加頻率偵測器(FD)來增加捕捉範圍
57 圖 3.6 FD之輸入、輸出波型	
58 圖3.7(b) wA?wB 之PFD輸出輸入關係	圖
59 圖3.9 簡單之PFD電路	60 圖3.10 基本的PFD、Charge pump及
low pass filter和VCO電路	61 圖3.11 Charge pump 之輸出輸入關係圖
62 圖3.12 PFD/CP/LPF 電路之步	階響應圖 之線性模型
63 圖 3.14 加入C2以使Vcp之	波型太過於尖銳66 圖 4.1 CMOS Differential VCO
電路67 圖4.2(a) S(1,1)的大小	圖
68 圖4.3 振盪器在暗	持域下之振盪波型69 圖4.4 振盪器之Phase
noise performance69 圖4.5 CMC	OS Differential VCO之輸出頻率對控制電壓關係圖…70 圖4.6 CMOS
Differential VCO之佈局平面圖	4.7 四相位輸出壓控振盪器電路71 圖4.8
四相位輸出壓控振盪器S(1,1)之大小圖及相位圖	.72 圖4.9 四相位輸出壓控振盪器佈局平面圖
圖4.10 四相位輸出壓控振盪器之輸出頻率對控制電壓	關係圖 73 圖4.11 四相位輸出壓控振盪器之四個輸出波型
…74 圖4.12 四相位輸出壓控振盪器的phase noise perfo	rmance圖…74 圖4.13 pushing 測試
75 圖4.14 pulling 測試	
77 圖4.16 PFD之輸入和輸出波型	
	圖80 圖4.19 charge及 low pass filter輸入和輸出訊
訊號之圖型81 圖4.20 CMOS Differential VCO之電	路架構82 圖4.21 CMOS Differential VCO之輸出
波型83 圖4.22 VCO控制電壓和輸出	出可調整頻率關係圖
85 圖4.24 charge pump之輔	讨出電流曲線85 圖4.25 輸入訊號(Vin)和VCO
輸出訊號(VCO) 之比較圖86 圖4.26 量測輸出相	位是否相差90度(方法1)87 圖4.27 量測輸出相位
是否相差90度(方法3)88 圖4.28 量	測輸出相位是否相差90度(方法4)88 圖4.29(a) A點
之相位	29(b) A點與A、B兩點合成之後的相位89 圖4.29(c)
A點與A、C兩點合成之後的相位]4.30 量測輸出訊號之Phase noise90 圖A.1
等效的Noise Model	94 表目錄 表5.1 四相位輸出壓控振盪器之規格表
92 表5.2 近年來發表之paper和本論文電路之比較影	表

參考文獻

Reference [1] Ali Hajimiri and Thomas H. Lee, "Design Issues in CMOS Differential LC Oscillators," IEEE J. Solid-State Circuits, vol. 34, pp. 717-723, May 1999.

[2] P. Kinget, "A fully integrated 2.7V 0.35um CMOS VCO for 5GHz wireless applications," ISSCC Digest of Technical Papers, pp. 226-227, Feb. 1998.

[3] B. Razavi and L. Christoper, "A 2.6GHz/5.2 GHz CMOS voltage-controlled oscillators," ISSCC Digest of Technical Papers, pp.402+403, 1999.

[4] Ting-Ping Liu, "A 6.5GHz monolithic CMOS voltage-controlled oscillator, "ISSCC Digest of Technical Papers, pp.404-405, 1999.

[5] Chih-Ming Hung, Brian A. Floyd, and Kenneth K. O, "A Fully Integrated 5.35GHz CMOS VCO and a Prescalar," IEEE Radio Frequency Integrated Circuits Symposium, pp. 69-72, 2000.

[6] Akihiro Yamagishi, Tsuneo Techniques, Mitsuru Harada, and Junichi Kodate, "A Low-Voltage 6-GHz-Band CMOS Monolithic LC-Tank VCO Using a Tuning-Range Switching Technique," IEEE MTT-S Digest, pp. 735-738, 2000.

[7] Rategh, H.R. and Samavati, H. and Lee, T.H. "A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver, "IEEE J. Solid-State circuits, Vol. 35, pp. 780-787, May 2000.

[8] Samori, C and; Levantino, S. and Boccuzzi, V. "A —94dBc/Hz at 100KHz, fully-integrated, 5-GHz, CMOS VCO with 18% tuning range for Bluetooth applications, " IEEE Conference on Custion Integrated Circuits, pp. 201-204, 2001.

[9] Yuan-Kai Chu, "Design of 802.11a WLAN Receiver 5GHz U-NII Band Down-Converter RF ICs," Master Dissertation, National Cheng Kung University, 2002.

[10] Guang-Kaai Dehng, "Implementation and Application of CMOS DLL/PLL," Ph.D. Dissertation, National Taiwan University, 2000.

[11] B. Razavi, "Design of Analog CMOS Integrated Circuits," 1st ed., McGraw-Hill, New York, NY, 2002.

[12] B. Razavi, "RF Microelectronics" Prentice Hall PTR, 1998.