單缸引擎電子燃油噴射系統對性能之研究

陳聖中、陳慶耀

E-mail: 9222194@mail.dyu.edu.tw

摘要

本研究主要係希望針對傳統小排氣量的引擎,更改其供油方式以取代化油器供油,利用市售機車的噴射供油系統作為供油元件,針對省油車的操作環境,對其一系列控制參數作最佳的搭配,提高省油車引擎在特定情況下的性能。然而,即便是噴射供油機車引擎。最小的使用極限仍限制在排氣量在125 cc左右的機車引擎。本文希望利用一成熟之50cc化油器引擎,從噴油脈寬、噴油時機、點火系統與經考量引擎內部流場結構的方式來進行相關研究,經由實際的引擎動力計分析與搭載於省油車上的比較,建構一完整的電子噴射供油系統,作為省油車噴射引擎開發的基礎研究。 本研究先針對於原廠化油器引擎進行改良。實驗結果發現,安排適當的氣流運動方式之引擎,性能表現遠優於壓縮比提高至極限的引擎。當節氣門分別在40%、60%與80%時,引擎性能表現皆有顯著差異,與原廠引擎相比之下,BSFC值也明顯下降35%至70%。 在實際道路測試中發現,原廠活塞之化油器引擎實際油耗最佳為357.14km/l。當活塞形狀更改為頂部杯狀結構時,其性能表現明顯優於原廠活塞,於實車測試紀錄中可加以佐正。測試中搭配16之減速比時,其油耗最佳為526.47 km/l。由於性能提昇後,引擎實際測試中之加速性能相對提升,可得到較短之加速時間,相對之下將可有較少的燃油消耗量。 若將此引擎的供油方式更改為噴射系統供油模式時,不足的噴油脈寬初始設定與遞減速率,會導致省油車在加速過程中所需的加油時間過長,增加燃油的消耗。反之,若是增加噴油脈寬的時間,以及取得適當噴油脈寬遞減速率。雖在較濃的噴油模式下進行加速,卻可大幅度縮短加速的時間,減少油料消耗。實際路試結果中,所測得之最佳成績為618.97km/l。若另附加車殼時,所得之最佳成績為686.27km/l。經由引擎動力計與實車測試的結果,已可將針對省油車噴射供油引擎的操作模式有最佳之設定,兼顧省油訴求與良好動力輸出之目的。

關鍵詞: 省油車;引擎;噴射供油;噴油脈寬;減速比

目錄

封面內頁 簽名頁 授權書			iii	中文摘要		
iv 英文摘						
	xi 表目	錄			xiii 符號	
說明		xv 第一章	緒論			
11.1 研究背景		1 1.2 研究	克動機		2 1.	3
文獻探討	3 角	第二章 研究方法	法與進行步驟.		9 2.	1
實驗設備	9 2	.1.1 HONDA C	50引擎		9 2.1.2 引擎動力記	+
9	2.1.3 空燃比測試機			.10 2.1.4 廢氣分析儀.		
10 2.1.5 引擎轉速計.		11 2	.1.6 溫度量測	设備	11	
2.1.7 數位示波器	11 2.1	.8 ECU控制器.		12	2.1.9 道路測試用	
車12	2.2 實驗步驟			12 2.2.1 原廠引	擎性能提升	
13 2.2.2 化油器	擎性能測試		.18 2.2.3 噴射	系統硬體架設		
19 2.2.4 控制系統規劃		23 2.2.5 控制系統	統參數設定		25 2.2.6 控制系	
統測試	27 第三章 結果與	與討論		3	0 3.1 引擎穩態性	
能測試	30 3.2 化油器引	擎實車測試		34 3.3 噴!	射引擎實車測試	
35 第	四章 結論			39 參考文	文獻	
	41					

參考文獻

The study of performance of the single-cylinder engine with electronic fuel injection system 指導教授: 陳慶耀 指導教授(英文姓名): Ching-Yao Chen 學位類別: 碩士 校院名稱: 大葉大學 系所名稱: 機械工程學系碩士班 學號: E9001010 學年度: 91 語文別: 中文 論文頁數: 0 關鍵詞: 省油車;引擎; 噴射供油; 噴油脈寬; 減速比 英文關鍵詞: super-mileage; engine; fuel injection; injection duration; gear ratio 被引用次數: 2 [摘要]本研究主要係希望針對傳統小排氣量的引擎,更改其供油方式以取代化油器供油,利用市售機車的噴射供油系統作為供油元件,

封封自冲单的操作场境,到共一系列控制参数作取住的指配,旋向	自出单51学住村还得况下的注形。 然间,即使定填别供出饿单51学。
最小的使用極限仍限制在排氣量在125 cc左右的機車引擎。本文希望	望利用一成熟之50cc化油器引擎,從噴油脈寬、噴油時機、點火系統
與經考量引擎內部流場結構的方式來進行相關研究,經由實際的引	擎動力計分析與搭載於省油車上的比較,建構一完整的電子噴射供油
系統,作為省油車噴射引擎開發的基礎研究。 本研究先針對於原屬	紀油器引擎進行改良。實驗結果發現,安排適當的氣流運動方式之
引擎,性能表現遠優於壓縮比提高至極限的引擎。當節氣門分別在	40%、60%與80%時,引擎性能表現皆有顯著差異,與原廠引擎相比
之下,BSFC值也明顯下降35%至70%。 在實際道路測試中發現,原	原廠活塞之化油器引擎實際油耗最佳為357.14km/l。當活塞形狀更改為
頂部杯狀結構時,其性能表現明顯優於原廠活塞,於實車測試紀錄	中可加以佐正。測試中搭配16之減速比時,其油耗最佳為526.47 km/l
。由於性能提昇後,引擎實際測試中之加速性能相對提升,可得到	較短之加速時間,相對之下將可有較少的燃油消耗量。 若將此引擎
	與遞減速率,會導致省油車在加速過程中所需的加油時間過長,增加
燃油的消耗。反之,若是增加噴油脈寬的時間,以及取得適當噴油	脈寬遞減速率。雖在較濃的噴油模式下進行加速,卻可大幅度縮短加
	618.97km/I。若另附加車殼時,所得之最佳成績為686.27km/I。 經由
引擎動力計與實車測試的結果,已可將針對省油車噴射供油引擎的	
	中文语:100 mm
	vi 誌謝
	ix 圖目錄
	xiii 符號說明
	11.1 研究背景
	文獻探討
	9 2.1.3 空燃比測試機10 2.1.4 廢
	.8 ECU控制器
	12 2.2.1 原廠引擎性能提升
	系統硬體架設
	擎穩態性能測試
	35 第四章 結論
N., and Werner, P.: " Bosch Electronic Fuel Injection with Closed Loop	
	• •
[2]Camp, J., and Rachel, T.: "Closed-Loop Electronic Fuel and Air Co	
[3]Seiter, R. E., and Clark, R. J.: "Ford Three-Way Catalyst and Feedl	back Fuel Control System, SAE paper 780203, SAE Trans., Vol. 87,
1978.	
	ire Development of Gasoline Fuel Injection Systems for Passenger Cars, "
SAE paper 800467, 1980.	
[5]Bowler, L.L.: "Throttle Body Fuel Injection (TBI)-An Integrated En	
[6]何善治, "一種單缸四行程引擎噴油系統控制之研究,"清華大學	
[7]林俊雄,"四行程機車噴油引擎燃燒特性研究,"成功大學碩士論	
[8]牛振虎,"單缸汽油引擎電子噴射測試發展系統,"中正理工碩士	
[9]戴昌正,"噴射引擎動態測試系統之開發與實驗分析,"中正理工	
[10]趙志勇,楊成宗," 汽油噴射系統理論與實務," 全華科技圖書有	
[11]Nogi, T., Ohyama, Y., Yamauchi, T., and Kuroiwa, H.: "Mixture	Formation of Fuel Injection System in Gasoline Engines, " SAE paper
NO.880558, 1988.	
[12]Nogi, T., Ohyama, Y., and Yamauchi, T.: " Effects of Mixture For	nation of Fuel Injection System in Gasoline Engine, "SAE paper

- NO.891961, 1989.
- [13] Iwano, H., Jaitoh, M., Sawamoto, K., and Nagaishi, H., "An Analysis of Induction Port Fuel Behavior," SAE paper NO.912348, 1991.
- [14]Quader, A.A., "How Injector, Engine, and Fuel Variables Impact Smoke and Hydrocarbon Emissions with Port Fuel Injection," SAE paper NO.890623, 1989.
- [15]江松柏, "PIV的發展與應用?引擎缸內流場滾轉運動之診測,"台灣科技大學碩士論文,2002.