應用影像視覺於IC包裝條管製程之線上檢測

曾裕權、陳昭雄

E-mail: 9222166@mail.dyu.edu.tw

摘要

中文摘要本研究主要是利用影像視覺技術於IC包裝條管製程之不良品線上檢測。研究方向主要以分段影像的方式,針對IC容座(簡稱目標物)於製程中凹陷或凸起的形狀特徵做檢測,另外為了避免IC包裝條管多類型的變化性,以檢測框的方式選取欲檢測的目標物,來縮小檢測範圍並提高檢測彈性,並運用資料庫記錄良品及不良品的製程檢測資料。在線上檢測過程中,先利用目標物的中心圓孔,經過影像運算後找出圓,再以最小平方法(Least square)找出圓心,以利用此圓心,當作影像檢測之定位點。不良品檢測分兩階段進行,第一階段利用影像比對方式,經由目標物與標準物做影像相減,以檢測IC容座表面之瑕疵品,我們提出統計製程、"Fuzzy C-mean"和類神經三種方法來歸類此相減影像於良品或不良品判斷,並比較此三種方法的優劣。第二階段針對IC容座之特殊尺寸作量測,以檢測尺寸過大或過小之不良品,首先利用梯度法尋邊,找出兩邊界最小距離,以判定是否超過所設定之標準尺寸範圍。最後本研究實際應用於IC包裝條管製程之線上檢測,以驗證所提方法可行性,不良品之辨識率可達96%以上。

關鍵詞:影像視覺;線上檢測;包裝條管

目錄

目録 封面内貝 簽 名 貝 吾	受 罹	甲又摘要	
	V Abstract	VI 誌謝	
	VII 目 錄	VIII 圖 !	目 錄
	X表目錄	XIII 第	「一章 緒論
	11.1 研究動機與目的		1 1.2 相關文獻回顧
	2 第二章 視覺影像系統簡	ā	5 2.1 機器視覺系
統基本架構	5 2.2 光照設備及	打光源的方式	6 2.3 影像
	7 2.4 影像原		
2.4.1空間影像處理		2 影像前處理	
	1		
	管製程檢測系統		
	種類		
	裝條管製程		
	3.4檢測系統流程		
	39 4.1 操作設定		
	42 4.3 影像定位		
	47 4.5 尺寸量測		
	57 第六章 未來		
	65 圖		
	明		
	3.		
_	6 灰度數值表示方式		
	圖2.8 低通濾波器		
	. 11 圖 2.10高通濾波器		
	12 圖 2.12 IC包裝條管長條圖		
	20 画 2.16 類伊經則回式第 21 圖 2.18 線性限制。		
	21 圖 2.18 緑性限制: 22 圖 2.20 傳統之		
	22 画 2.20		
154.0 DT 之 1.0 京広		ジア・注画 SMJ-32ブIC容座	20 画 3.1 空 28 晑

3.3 型號SM-5X之IC容座28 圖	3.4 型號SMD-9070之IC容座		
28 圖 3.5 型號TO-263-1之IC容座			
29 圖 3.7 IC容座表面缺陷			
30 圖 3.9 IC包裝條管之加熱擠壓成型自動化機械配置圖.	31 圖 3.10 IC條管製程流程圖		
32 圖 3.11 IC條管製程生產線正面實體圖	33 圖 3.12 IC條管製程生產線反面實體圖		
	34 圖 3.14 Sony公司1/2 " CCD		
35 圖 3.15 環型光	35 圖 3.16 前照式照明實體圖		
36 圖 3.17 反面IC容座	36 圖 3.18 正面IC容座		
36 圖 3.19 影像檢測系統流程圖	37 圖 4.1影像檢測操作步驟		
40 圖 4.2 離線設定之主畫面設	定40 圖 4.3 離線設定之次畫		
面設定41 圖 4.4 擷取標準片影像	41 圖 4.5 設定每組尺		
寸之標準值與公差			
波器43 圖 4.8 IC包裝	條管之中心定位圓孔44 圖 4.9 經		
二值化後之小圓孔45 圖 4.10經	Sobel運算式運算後 45 圖		
4.11圓心位置偏移時47 圖	— • • • • • • • • • • • • • • • • • • •		
47 圖 4.13 標準片與待測片影像相減後之影像			
54 圖 4.15 二次微分運算尋邊	— — — — — — — — — — — — — — — — — — — —		
55 圖 4.17 資料庫一	—		
時訓練收斂情形61 表 目 錄 表 5.1 Fuzzy C-mean訓練,當 時之			
時之 與 值 58 表5.3 FUZZY C-MEAN訓練,當			
練,當 時之 與 值 58 表 5.5 FUZZY C-MEAN記			
時160 表5.7 改變不同位置			
位置時360 表5.9 改變不同			
變不同位置時5			
表5.12 FCM實驗結果表6	62 表5.13 類神經RBF實驗結果表		
63			

參考文獻

考文獻 [1] 連國珍, "數位影像處理", 儒林 (2000) 二版。

- [2] Rafael C. Gonzalez、Richard E. Woods, "Digital image processing", Addison Wesley Publishing Company(1992).
- [3] 喬珊 , " CCD 影像幾何圖形之辨識 ",碩士論文,中央大學 機械工程研究所,民國八十六年。
- [4] 黃朝群 , "應用於 LCD 定位檢測系統之研究 " , 碩士論文 , 逢甲 大學自動控制工程研究所 , 民國九十年。
- [5] Brian K. Lien, "Efficient implementation of binary morphological image processing", OPTICAL ENGINEERING, Vol. 33, No. 11, November (1994).
- [6] 曾健維, "晶片印字瑕疵檢測之研究",碩士論文,中原大學工業工程研究所,民國八十九年。
- [7] 王鵬凱、蔡篤銘, "應用影像視覺於導線架製程之品質自動監測",工業工程學刊 (1999)。
- [8] Md. Mijanur Rahman, "Scale-Space Characteristics for Image Segmentation", IEEE Catalogue No. 01CH37239 (2001).
- [9] Allan Aasbjerg Nielsen, "An Extension to a Filter Implementation of a Local Quadratic Surface for Image Noise Estimation", IMM, Department of Mathematical Modeling Technical University of Denmark.
- [10] D.P Mukherjee、P. Pal and J. Das, "Sodar image segmentation by fuzzy c-mean", Signal Processing, p295-301(1996) [11] S. Banerjee, D.P. Mukherjee and D. Dutta Majumdar, "Fuzzy C-mean approach to tissue classification in multimodal medical imaging", Elseier Science 1999.
- [12] J.C Noordam、W.H.A.M van den Broek and L.M.C. Buydens, "Multivariate image segmentation with cluster size insensitive Fuzzy C-mean", Elsevier Science, June 2002。
- [13] Lu Yingwei , Narashiman Sundararajan and P. Saratchandran , "Performance Evaluation of a Sequential Minimal Radial Basis Function (RBF) Neural Network Learning Algorithm" , IEEE 1998。
- [14] Y. Li , N. Sundararajan and P. Saratchandran , " Analysis of minimal radial basis function network algorithm for real- time identification of nonlinear dynamic systems" , IEEE 2000.
- [15] Chao-Ton Su、Taho Yang and Chir-Mour Ke , "A Neural-Network Approach for Semiconductor Wafer Post-Sawing Inspect" IEEE Vol. 15 , No. 2 , MAY 2002.
- [16] Faouzi Bouslama and Hiroki Kishibe, "Fuzzy Logic in the Recognition of Machine Printed Arabic Characters" IEEE 1999.

- [17] Alireza Khotanzad, "A Vision System for Inspection of Ball Bonds and 2-D Profile of Bonding Wires in Integrated Circuits", IEEE TRANSACIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 7, NO. 4 (1994).
- [18] Koduri K. Sreenivasan, "Automated Vision System for Inspection of IC Pads and Bonds", IEEE TRANSACTIONS ON COMPOENTS, HYBRIDS, AND MANUFACTURING, VOL. 16, NO 3, MAY (1993).
- [19] Tae Hyeon Kim, "An Efficient Method of Estimating Edge Locations with Subpixel LAccuracy in noisy image", IEEE TENCON (1999).
- [20] Anoop Kulkarni, "Edge Detection using Scale Space Knowledge", IEEE TENCON (1993).
- [21] Lijun Ding, "On the Canny edge detector", Pattern Recognition Society (2001),
- [22] YI LU AND RAMESH C. JAIN, "Behavior of Edges in Scale Space", IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 4, APRIL (1989).
- [23] Yi Lu and Rmesh C. Jain , "Reasoning about Edges in Scale Space", IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 4, APRIL (1992).
- [24] 劉權霈,"應用電腦視覺技術於 PCB 自動檢測系統",碩士論文,交通大學工業工程及管理學系碩士班,民國九十年。
- [25] ARUN D. KULKARNI, "COMPUTER VISION AND FUZZY NEURAL SYSTEMS", Prentice Hall PTR (2001).
- [26] John Erik Larsson, "Paper machine dry line position control during grade changes", Proceedings of the American Control Conference Philadelphia, Pennsylvania (1998).
- [27] Willian C. K. and Donald E. G., "Fuzzy Clustering with a fuzzy covariance matrix", IEEE Jan. 1979 [28] G.C. Goodwin and K.S. Sin, "Adaptive filtering prediction and control", Engelwood Cliffs", NJ, Prentice-Hall, 1984.