Preparation and characterization of biodegradable food packaging films containing cellulose and zein

張淑娟、顏裕鴻;邱義源

E-mail: 8701413@mail.dyu.edu.tw

ABSTRACT

Development and use of biodegradable food packaging films insubstitution of petroleum plastic films is an urgent issue attracting theworldwide concern based on the consideration of environmental protection. In general, cellulose-based films are hydrophilic and hygroscopic, whilezein films are hydrophobic and fragile. In this study, a goal was pursued tocombine the beneficial properties of cellulose and zein to comprise asuitable formulation to prepare biodegradable packaging films. Hydroxylpropyl me thyl cellulose (HPMC), methyl cellulose (MC) andzein were used. The plasticizer effect of polyethylene glycol (PEG) wasintensively investigated. A dynamic mechanical analyzer (DMA) wasmonitored to analyze the mechanical properties of the prepared films. Elongation (or strain), toughness and tensile strength (or stress) of HPMC and HPMC/MC films decreased while hardness (modulus) increasedwith the increase of zein concentration. On the same basis of zeinconcentration, elongation and hardness of H PMC/MC films are higher than HPMC films while tan d of HPMC/MC films increased with the increase of zeinconcentration. In comparison, HPMC films were more elastic than HPMC/MCfilms. As a general trend, both HPMC and HPMC/MC films increased theirhard-ness and brittleness as zein concentraion increased. When PEG wasadded, elongation of HPMC and HPMC/MC films increased while hardnessdecreased with increase of PEG addition. The toughness of HPMC films also increased as the concentration of the added PEG in -creased. Tan d and Tg of HPMC and HPMC/MC films decreased with increase of PEG addition and this indicates that elasticity of the films increased with increase of PEG addition. Water vapor permeability (WVP) of HPMC and HPMC/MC filmsdecreased as the concentration of zein increased. On the same basis of zeinconcentration, WVP of HPMC films decreased with an increase of PEG addition. When PEG was added at 1.0 % for HPMC/MC films, the lowest WVP was obtained. In the aspect of oxygen barrier of the films in relation to peanut oiloxi-dation, oxidation retardation of the HPMC and HPMC/MC films in-creasedwith increase of zein concentration. When PEG was added, the most effectiveoxygen barrier in prevention of oil oxidation was ob-tained at 1.0 % PEG for HPMC films containing 2.0 % zein and 0.5 % PEG for HPMC/MC films containing 1.0 % zein.

Keywords: 甲基纖維; 玉米蛋白; 羥丙基甲基纖維

Table of Contents

0

REFERENCES

0