DC鋁胚鑄造程序之溫度變化與缺陷探討

黃翊展、王正賢

E-mail: 386735@mail.dyu.edu.tw

摘要

鋁胚連續鑄造的過程中,影響鑄造工件品質的因素很多,如:鑄造速度、冷卻水水量、環境溫度、鑄造溫度等。這些因素 使得鑄件產生翹曲變形,嚴重的甚至於破裂或斷裂。針對此問題,本研究建立一預測系統來模擬鋁胚之連續鑄造過程的熱 散失與翹曲變形的現象,並依此預測系統進行鋁胚連續鑄造之製程改善。本研究採用有限元素軟體Workbench CFX來模擬 鋁金屬液、鑄模與冷卻水之間的熱傳行為,使用CFX中熱-流耦合分析來處理鋁胚受冷卻水凝固時熱釋放的問題。本文將 上述分析之熱傳導係數導入ANSYS軟體中,作為熱-固耦合模擬分析時之初始資料,運用ANSYS的Birth and Death技術, 進行鋁合金7075的鑄造模擬,並針對不同之鑄造速度,來做鋁胚缺陷分析的比較。 由模擬計算結果發現鑄造速度愈快,鋁 胚中心溫度沿鑄造方向之下降會越減緩、翹曲程度越小、表面凹陷量越少,鋁胚凸肚量則是越大。對照實際鑄造完成的鋁 胚變形情況,結果顯示與模擬之形變現象一致。

關鍵詞: 鋁胚、DC鑄造、側凹

目錄

封面內頁 簽名頁 中文摘要	iii	
ABSTRACT	iv 誌	
謝	v 目	
錄	vi 圖目	
錄	viii 表目	
錄	xi 第一章緒論	1
1.1研究背景	1 1.2鋁胚DC鑄造介紹	2 1.3研
究目的	8 1.4研究方法	12 第二章文
獻回顧	15 2.1熱裂(Heat Tears)	25 2.2翹曲
與凸肚	30 2.3有限元素介紹	32 第三章研究
方法	35 3.1有限元素模型	
數與邊界條件設定	40 3.3 熱對流邊界	42-vii 3.4 求解
法	45 第四章結果與討論	
水量與熱對流係數	50 4.2材料性質	54 4.3鑄造速
度與鋁胚溫度場	58 4.4鑄造速度與鋁胚型變	63 4.4.1鋁胚翹
曲	63 4.4.2鋁胚側凹	65 4.4.3鈻胚凸
肚	67 4.5鑄造速度與鋁胚應力	69 第五章結
論	75 5.1結論	75 5.2未來
發展方向		78-viii 圖
目錄圖1.1DC鋁胚鑄造示意圖	4 圖1.2鑄模與冷卻水	箱示意
圖	6 圖1.3圓柱鑄模	6 圖1.4二次冷卻區域示意
圖	7 圖1.5鋁湯注入模具	7 圖1.6鋁胚拉
臺	8 圖1.7鋁胚翹曲	9 圖1.8鋁胚破
裂[13]	10 圖1.9鋁胚側凹	11 圖1.10鋁胚凸
肚示意圖	11 圖1.11研究流程圖	14 圖2.1砂模鑄
造法[1]	19 圖2.2脫蠟鑄造法	20 圖2.3消失模鑄
造法		22 圖2.5亞薩克
法[10]		24 圖2.7Quarter
破裂[13]		26 圖2.9J破
裂[13]		央熱裂[15]27 圖2.11掃
描電子顯微鏡下的表面裂紋. C點	沾為初級鋁的結晶,D-ix 表示共晶地區[7]	
圖2.12實驗裝置示意圖顯示幾何	測量位置[10]29 圖2.13鋁胚凸肚位置示:	意圖31

圖2.14PLANE13平面元素模型	33 圖2.15SOLID5實體元素模	型34
圖3.1有限元素1/4模型		E邊界設定41
圖3.3模型整體與表面邊界條件	41 圖3.4冷卻水熱對流係數模排	疑43
圖3.5鑄造程序模擬示意圖	46 圖3.6Birth and Death元素啟	(用關閉示意圖47
圖3.7模型鑄造區塊切割	49 圖4.1鋁胚表面溫度模擬	51
圖4.2長度與流速之關係	52 圖4.3長度與熱對流係數之間	關係54
圖4.4楊氏係數與溫度之關係[8]		關係[8]56
圖4.6密度與溫度之關係[8]		57
圖4.8熱傳導係數與溫度之關係[8]	58 圖4.9不同鑄造速度下,鋁	胚中心溫度分布(單位:mm/min
) 59 圖4.10鋁胚中心溫度與鋁胚長	·度之關係60 圖4.11底模溫度取值·	位
置	61-x 圖4.12鑄造速度與底模溫度之關係	62 圖4.13鋁胚底模翹曲
示意圖	63 圖4.14鋁胚翹曲模擬	64 圖4.15鋁胚側凹示意
圖	65 圖4.16鋁胚側凹模擬圖	66 圖4.17凸肚示意
圖	67 圖4.18鑄造速度與凸肚量之關係	68 圖4.19CAE模擬
情況	69 圖4.20凝固厚度量測示意圖	70 圖4.21拉鑄速度
與脫模凝固厚度	71 圖4.22表面溫度與應力擷取位置	72 圖4.237075鋁合
金溫度與最大抗拉強度		74-xi 表目錄 表2.1
美國鋁業協會編號規則	16 表2.2質別記號代表意義	17 表2.3質
別記號H、T所表示之意義	17 表4.1長度與流速	52 表4.2長度
與熱對流係數	53 表4.37075鋁合金材料性質(室溫)	55 表4.4鑄造速
度與翹曲量	64 表4.5鑄造速度與側凹量	67 表4.6鋁合金在
各溫度下所對應之應力	74	

參考文獻

[1] 龔肇鑄, "鑄造學,"新文京開發出版有限公司, 民91 [2] 林英明,林昂,"機械製造I,"全華科技圖書股份有限公司, 民92 [3] 范元昌,蘇健忠,翁震灼,陳俊沐,"鋁、鎂合金半固態觸變鑄造技術,"工業材料雜誌,186期,pp.131-138, 民91 [4] 劉文海,"複合鋁金屬鑄造技術前景看好,"金屬中心 [5] 劉文海,"煉鋁工業發展趨勢,"金屬中心, 民95 [6] R. K. Paramatmuni, K. M. Chang, B. S. Kang, Xingbo Liu,"
Evaluation of cracking resistance of DC casting high strength aluminum ingots," Materials Science and Engineering, A 379, pp.293-301, 2004.
[7] K. D. Subodh, "Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking," Industrial Technologies Program Aluminum Industry of the Future, June, 2006.

[8] I. M., "Residual Stress Reduction During Quenching of Wrought 7075 Aluminum Alloy," Materials Science and Engineering, May, 2004 [9] 賴耿陽, "鑄物與非鐵金屬材料的熱處理,"復漢出版社有限公司, 民87 [10] M. Zalo`nik, IvanBajsic ', Bo`idarS ' arler, "A Nondestructive Experimental Determination of the Heat Flux during Cooling of Direct-Chill Cast Aluminum Alloy Billets," Material in technologize, No.36, pp.3-4, 2002.

[11] J. G.Kaufman., "Properties of Aluminum Alloys," The Aluminum Association Inc., Arlington, 1999 [12] 張郭益,"機械加工法(上),"全 華科技圖書股份有限公司, 民74 [13] K. M., Chang, Bruce Kang, "Cracking Control in DC casting of High-Strength aluminum alloys," Journal of the Chinese Institute of engineers, Vol.22, No.1, pp.27-42, 1999.

[14] P. Barral., P. Quintela., M. T.S?nchez, "A computationally efficient algorithm to simulate the butt curl deformation in casting processes," International Journal of Material Forming, Volume 2, Supplement 1, pp.911-914 [15] X. F. Yua, Y. M. Zhaoa, X. Y. Wenb, T. Zhaia, "A study of mechanical isotropy of continuous casting direct chill cast AA5182 AI alloys," Materials Science and Engineering, A 394, pp.376-384, 2005.
[16] J. M. Drezet, M.R., "Prediction of Hot Tears in DC-cast Aluminum Billets," Cast Shop Technology, February, 2001.

[17] D. Xu, W. K. Jones, J. W. Evans, D. P. Cook, "Mathematical and physical modeling of systems for metal delivery in the continuous casting of steel and DC casting of aluminum," Applied Mathematical Modeling, No.22, pp.883-893, 1998.

[18] Vincent Mathier, "Two-Phase Modeling of Hot Tearing in Aluminum Alloys using a Semi-Coupled Method," Ecolab Poly technique Federals De Lausanne, 2007.

[19] J. M., Drezet, G. U. Grun, Wolfgan Schneider, "3D-Modeling of Ingot Geometry Development of DC-Cast Aluminum Ingots During the Start-Up Phase," DGM conference, November, pp.13-15, 2000.

[20] B. Tech., "Constitutive behavior of aluminum alloys AA3104, AA5182, and AA6111 at below solidus temperatures," Indian Institute of Technology Roorkee, India, 2002 [21] A. R. Alhassan-Abu and M. A. Wells, "Determination of constitutive behavior of as cast AA5182 for deformations that occur during direct chill casting using the glebe 1500 machine," Materials Science and Technology, January, Vol.19, 2003 [22] K. N. Seetharamu, R. Paragasam, G. A Quadir, Z. A. Zainal, B Sashay Prasad, and T Sundararajan, "Finite element modeling of solidification phenomena," Sad Hana, Vol.26, Parts1&2, February-April, pp.103-120, 2001 [23] J. M. Drezet, M. Rappaz, "Modeling of ingot distortion

during direct chill casting of aluminum alloys, "Metallurgical and Materials Transactions A, Vol.27A, October, 1996 [24] J. M. Drezet, M. Rappaz, "Modeling techniques for (semi-)continuous," Ecole de M'ecanique des Mat'eriaux, M'ecamat, Aussois, 2008 [25] Yaping Wu, "Numerical Analysis of Direct-Chill," Department of Mechanical and Aerospace Engineering College of Engineering and Mineral Resources Morgantown West Virginia, 1999 [26] J. M. Drezet, M. Gremaud, M. Rappaz, "State-of-the-Art in the Modeling of Aluminum and Copper Continuous Casting Processes," Computational Materials Laboratory [27] J. Sengupta, S. L. Cockcroft, D. Maijer, M.A. Wells, A. Larouche,

"The effect of water ejection and water incursion on the, "Journal of Light Metals 2, pp.137-148, 2002 [28] J. B. Wiskel, "Thermal analysis of the startup phase for DC casting of an AA5182 aluminum ingot," The University of British Columbia, July, 1995 [29] Ivar Farup, "Thermally induced deformations," 17th, April, 2000 [30] M. R., M. R., "Simulation of solidification," Current opinion in solid state & materials science, pp. 275-282, 1998 [31] B. Eng., "Hot tearing and constitutive behavior of semi-solid aluminum alloys," McMaster university, 2002 [32] H. Y., "United states patent and trademark office," September 4, NO. 4,166,495, 1979 [33] W. E., G. U., W. S., J. M., "Thermo mechanical modeling to shrinkage shape and mold openings for DC casting rolling ingots," Light Metals, pp. 703-708, 2002