自主性模糊PID控制器四輪行駛系統研製

胡睿紘、胡永柟、陳木松

E-mail: 374681@mail.dyu.edu.tw

摘要

本論文的設計目的是實現模糊PID控制應用自走車的運轉,藉由紅外線感測器、超音波感測器等做四輪自走車的自主性避障控制動作,可以讓四輪自走車前進、左右、後退等穩定智能控制且降低行駛時的危險現象。系統設計是以模糊PID控制使自走車控制不依賴系統的模型可穩定行駛控制,真正實現模糊PID控制器的優點應用。

關鍵詞:模糊PID控制、紅外線感測器、超音波感測器、智能控制

目錄

封面內頁 簽名頁 中文摘要
..........v 誌謝......................... v 目錄..........
...............vi 圖目錄.......................... viii 表目錄..
. 1 1.2研究動機與目的
模糊理論 2.1模糊理論
第三章 自走車系統設計 3.1 自走車系統設計
......12 3.389C52微晶片控制器...........15 3.4 馬達驅動模組.................
20 3.5 LCD設計
. 35 3.7 超音波感測器
四章 實驗驗證 4.1 兩輪伺服超音波避障控制47 4.2 模糊控制器的控制規則
60 第五章 結論與未來展望 5.1結論
統的方塊圖
形(trapezoid shape)歸屬函數 6 圖 2.4 高斯(Gaussian shape)歸屬函數
. 7 圖 2.5 具PID功能的模糊控制器結構圖 10 圖 2.6 具PID功能的模糊控制器變形結構圖
...11 圖3.1 自主性模糊PID控制器四輪行駛結構.......12 圖3.2微處理機控制板...............
.....13 圖3.3 微處理機電路板透視圖............14 圖3.4 89C52接腳圖............
.......15 圖3.5 89C52振盪電路...............16 圖3.6 89C52 RESET電路....
...........17 圖3.7 馬達驅動板模組...............20 圖3.8 馬達驅動板透視圖.
入電流延遲時間或啟用切換圖23 圖3.11 L298雙向直流電動機控制圖23 圖3.12 兩
輪直流馬達電源部份電路圖
圖3.14 兩輪直流馬達聲光提示部份電路圖
26 圖3.16 LCD模組
31 圖3.18寫操作時序圖
.........37 圖3.20 CNY70結構圖及外觀.............37 圖3.21發光LED感測版...
..........37 圖3-22超音波產生硬體電路............38 圖3-23 超音波發射器.
接收器
圖3.27直流馬達轉距、電流與轉速的特性曲線圖43 圖 3.28直流馬達簡化等效圖
..44 圖4.1 避障小車電源部份電路圖...........48 圖4.2 避障小車單晶片部份電路圖.......
.....48 圖4.3 避障小車聲光提示部份電路圖.........49 圖4.4 避障小車超音波發送部份電路圖..
.......50 圖4.5 避障小車超音波接收部份電路圖.......50 圖4.6 避障小車電機驅動部份電路圖
.........50 圖4.7 自走車的實體設計圖............51 圖4.8 感測器的誤差e1的歸屬
函數圖 61 圖4.9 感測器的誤差變化ce1的歸屬函數圖 62 圖4.10 模糊輸出的歸屬
函數圖

控制	引響應圖								64	表	目	錄	表3	3.1	L29	98特	性₹	₹.										22
表3	.2 1602 L	_CD模	組引	腳功	能表									. :	29 🗦	表3.3	3 LC	D쿁	存	器。								
	. 30 表3.	4 讀寫	操作	時序	參數ネ	長.										. 3	11 表	₹4.1	模	胡規	則	表						
		31																										

參考文獻

許哲源,"自走車之驅動控制與避障,國立成功大學工程科學系碩士論文",2003年。孫任範,小型自走機器人動力驅動及相撲設計,台灣科技大學電機工程系碩士論文,2007年。張義和、王敏男、許宏昌、余春長,例說89S51-C語言,新文京開發處版股份有限公司,台北縣出版,2007年。蔡佳宏,無人自動飛行載具駕駛系統之模糊邏輯控制器設計與硬體迴路模擬,正修科技大學機電工程研究所,2009年7月。楊英魁,Fuzzy控制,全華科技圖書出版台北縣出版,1992年。陳巧茵,"小型自走機器人以超音波避障之研究",成功大學工程學系碩士論文,民國90年。Oetomo D,Ang M H. Singularity -free joint actuation strategy for omnidirectional mobile platforms with powered offset caster wheels. ASME Journal of Mechanical Design,2008,130(5),pp18-22. pp27-33. 陳茂林等,"微處理機C-51實務設計",松崗資產管理股份有限公司,台灣、台北,2010.9。