The field-emission characteristics of zinc oxide tetrananorods

潘韋志、李世鴻

E-mail: 364808@mail.dyu.edu.tw

ABSTRACT

In this study, zinc oxide (ZnO) nanorods grown by a hydrothermal method were characterized to study the effect of varying growth parameters on the field emission characteristics. In the preparation of ZnO nanostructures, silicon substrates were first spin-coated with 0.0075M zinc acetate dihydrate to form a seeding layer, followed by the growth in the 1:1 mixed solution of zinc nitrate and hexamethylenetetramine. In this study, concentration was varied from 0.005M to 0.1M, temperature was varied from 80°C to 90°C, and growth time was varied from 0.5 hours to 5 hours. Field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), field-emission tunneling electron spectroscopy (FE-TEM) were used to investigate the surface morphology, chemical compositions, and microstructure of ZnO nanorods. The ZnO nanorods with the best electron field emission obtained in this study was grown with the concentration of 0.02M at the relatively low temperature of 90 ° C for 2 hours whose field emission was a current density of to 167.52 μ A/cm2 at the electric field of 9.5 V/ μ m. As observed from FE-SEM, ZnO nanorods mentioned above were grown uniformly on the silicon substrate with an average column diameter of 68.2 nm and an average column length of 1.439 μ m, and thus with an aspect ratio of 21.1. EDS shows that the ratio of oxygen atoms to zinc atoms is about 1:1.35. XRD and FE-TEM confirmed that the ZnO nanorods are promising nanomaterials for field emission device applications.

Keywords : zinc oxide nanorods, field emission

Table of Contents

目錄 封面內頁 簽名頁 中文摘要	
	v 目錄
...................vi 圖目錄.... ix 表目錄 .
	一章 緒論........................2
1.1 氧化鋅的歷史與簡介	. 2 1.2 氧化鋅的理論與演進
...2 1.3 氧化鋅的特性................	5 1.4 氧化鋅的應用
6 1.5 研究動機	2 第二章 氧化鋅奈米結構相關文獻回顧 .
	獻...........2 第三章 理論與研究方法.....
18 3.1 電子場發射理論	18 3.2 氧化鋅奈米柱的成長機
制213.3 氧化鋅製備方法.	
	氧化法......................24 3.3.3 化
學氣相沉積法(CVD)	4 物理氣相沉積法(PVD)...................25
3.3.5 模板法	. 26 3.4 實驗流程與步驟
...27 3.4.1 實驗流程..................	
.......28 3.4.3 基板清洗...........	
...........29 3.4.5 高溫爐管退火......	
電子顯微鏡	分析儀....................33 3.5.3 X光
繞射儀	場發射穿透式電子顯微鏡..................36
3.5.5 場發射量測裝置系統	. 38 第四章 實驗結果與討論..............
40 4.1 混合溶液濃度對氧化鋅奈米柱的研究與討論	41 4.1.1 氧化鋅奈米柱的表面型態(FE-SEM)之分析
41 4.1.2 氧化鋅奈米柱的元素成份(EDS)之分析.	49 4.1.3 氧化鋅奈米柱的結晶方向(XRD)之分
析50 4.1.4 氧化鋅奈米柱的電子場發射特性	之分析........52 4.2 成長溫度對氧化鋅奈米柱的研
究與討論57 4.1.1 氧化鋅奈米柱的表面型	態(FE-SEM)之分析.....57 4.1.2 氧化鋅奈米柱的元素
成份(EDS)之分析	钻晶方向(XRD)之分析.......66 4.1.4 氧化鋅奈米柱
的電子場發射特性之分析	l氧化鋅奈米柱的研究與討論..........72 4.1.1 氧化

鋅奈米柱的表面型態(FE-SEM)之分析......72 4.1.2 氧化鋅奈米柱的元素成份(EDS)之分析.......80 4.1.3
氧化鋅奈米柱的結晶方向(XRD)之分析.......81 4.1.4 氧化鋅奈米柱的電子場發射特性之分析......
.83 4.1.5 氧化鋅奈米柱的元素成份與晶格繞射(FE-TEM)之分析.87 第五章 結論.......................
89 參考文獻
、(b) 不同極性表面的氧化鋅結構模型....................................
。 鋅奈米線被曝光定義的圖形....................................
樣品均以90?C成長8小時, (a) 無種子層抛光Si基板: (b) 2 nm奈米金種子層: (c) 5 nm金薄膜: (d) 10 nm的ZnO奈米粒子
14 圖2-3 雷子場發射的短米線(0 2 µm)為成長2小時,直徑為60 nm。長奈米線(1 3 µm)為成長8小時,直徑
14 周2-4 水執法成長気化設置の1000000000000000000000000000000000000
突下(d) 测定10波图信切工/1分/17,正度医减偏获为10210信/10g回。(d) 测压冰节和10环液图信率低工以小流位成 Q+10 较态米貌的结里
野东小泳町和木・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
,(U) "辰皮U.OSIMIDY明酸虾,(U) "辰皮U.ISMIDY明酸虾;(U) "辰皮U.SMIDY明酸虾;(U) "辰皮U.SISIMIDY明酸虾;(I) "辰皮U.ZSIMIDY明酸 领 (a) 漂 在 2000年初前11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1
鲜,(g)
伯酸珜............................17 圖3-1 (a) 金屬 - 具仝能带示恴圖 - 木加電场、(b) 金屬 - 具仝能带示 克恩 - 杜上六天唱
意圖 - 外加局電場
圖3-3 化學氣相沉積示意圖.................25 圖3-4 實驗流程圖....................................
....27 圖3-5 場發射掃瞄式電子顯微鏡(附EDS).........35 圖3-6 高解析X光繞射儀........
.........35 圖3-7 場發射穿透式電子顯微鏡(附EDS)..........37 圖3-8 場發射量測示意圖....
............38 圖3-9 場發射量測裝置系統..................39 圖4-1 不同濃度的混合
溶液成長氧化鋅奈米柱以3K倍率的FE-SEM上視圖,濃度分別為:(a) 0.005M、(b) 0.01M、(c) 0.02M、(d) 0.05M、(e) 0.1M.
0.005M、(b) 0.01M、(c) 0.02M、(d) 0.05M、(e) 0.1M............44 圖4-3 不同濃度的混合溶液成長氧化鋅奈
米柱以100K倍率的FE-SEM上視圖,濃度分別為:(a) 0.005M、(b) 0.01M、(c) 0.02M、(d) 0.05M、(e) 0.1M.......
....45 圖4-4 不同濃度的混合溶液成長氧化鋅奈米柱以20K倍率的FE-SEM剖面圖,濃度分別為:(a) 0.005M、(b)
0.01M、(c) 0.02M、(d) 0.05M、(e) 0.1M....................................
關係圖 47 圖4-6 不同濃度的混合溶液成長氧化鋅奈米柱之高度關係圖 48 圖4-7 不同濃度的混合溶液成長氧化
鋅奈米柱之高寬比關係圖..48 圖4-8 不同濃度的混合溶液成長氧化鋅奈米柱之元素百分比分佈圖........
液成長氧化鋅奈米柱之XRD頻譜圖(濃度由下至上分別為:0.005M、0.01M、0.02M、0.05M及0.1M)
圖4-12 不同濃度的混合溶液成長氧化鋅奈米柱之雷流密度比較圖,如此如此以及2012年12月12日,12月11日,13月11日,13月1
度的混合溶液成長氧化锌奈米柱之相對應的大範圍Fowler-Nordbeim (F-N)圖 56 圖4-14 不同濃度的混合溶液成長氧化
经会米柱之相對應的小範圍Fowler-Nordbeim (F-N)圖 56 圖4-15 不同溫度的混合溶液成長氧化铵会米柱以3K倍率
的FE-SEM上相图 温度分别為:(a) 802C (b) 852C (c) 902C (d) 952C (a) 1002C 59 图4-16 不同温度的混合滚液成
与了2021年代國,温皮分別為了(d)0020、(b)0020、(d)0020、(d)0020、(d)0020、(d)0020、1.100回4101月月温皮的推口/月次就 = 気化弦奈米拉川30K倍家的FE-SEM上相图
夜報115年末末任以50K后半时12-56M工优画,温度力加满,(d) 60:5、(b) 65:5、(d) 50:5、(d) 55:5、(d) 55:5、(d) 55:5、(d) 100:5 60
團4-17 小问师反时此口沿攸风丧氧化軒示不住以100%后华时FE-3EM工优画,师反刀加菏,(d) 00%C、(D) 03%C、(C) 90%C
、(U) 93?(U、(E) 100?...01 画4-10 个内温度的成百俗权成长氧化鲜汞不住以20K 值华的FE-SEM 可闻画,温度刀加荷。(d) 2020 (b) 2520 (d) 0020 (d) 0520 (d) 10020 62 图4 10 不同调度的混合溶液成 目复化贫奋坐柱 支方须眼底图
00?0、(0) 03?0、(0) 90?0、(0) 95?0、(8) 100?0...02 圖4-19 个内温度的成百合枚成技能化研示不住之且徑斷涂圖...
64 圖4-22 个同温度的混合浴液成長氧化群余术柱之元系日分比分佈圖
圖4-23 不同温度的混合溶液成長氧化鋅余米柱之XRD頻譜圖(温度田卜至上分別為:80?C、85?C、90?C、95?C與100?C).
...70 圖4-26 不同溫度的混合溶液成長氧化鋅奈米柱之相對應的大範圍Fowler-Nordheim (F-N)圖...71 圖4-27 不同溫
度的混合溶液成長氧化鋅奈米柱之相對應的小範圍Fowler-Nordheim (F-N)圖 71 圖4-28 不同時間的混合溶液成長氧化
鋅奈米柱以3K倍率的FE-SEM上視圖,時間分別為:(a) 0.5小時、(b) 1小時、(c) 2小時、(d) 3小時、(e) 5小時...74 圖4-29
不同時間的混合溶液成長氧化鋅奈米柱以30K倍率的FE-SEM上視圖,時間分別為:(a) 0.5小時、(b) 1小時、(c) 2小時、(d) 3
小時、(e) 5小時..75 圖4-30 不同時間的混合溶液成長氧化鋅奈米柱以100K倍率的FE-SEM上視圖,時間分別為:(a) 0.5
小時、(b) 1小時、(c) 2小時、(d) 3小時、(e) 5小時..76 圖4-31 不同時間的混合溶液成長氧化鋅奈米柱以20K倍率
的FE-SEM剖面圖,時間分別為:(a) 0.5小時、(b) 1小時、(c) 2小時、(d) 3小時、(e) 5小時...77 圖4-32 不同時間的混合溶
液成長氧化鋅奈米柱之直徑關係圖...78 圖4-33 不同時間的混合溶液成長氧化鋅奈米柱之高度關係圖...79 圖4-34

不同時間的混合溶液成長氧化鋅奈米柱之高寬比關係圖. . 79 圖4-35 不同時間的混合溶液成長氧化鋅奈米柱之元素百分 間的混合溶液成長氧化鋅奈米柱之相對應的小範圍Fowler-Nordheim (F-N)圖..........86 圖4-41 氧化鋅奈米柱 的FE-TEM圖及元素百分比分佈表.....87 圖4-42 氧化鋅奈米柱之FE-TEM圖,其中(a) 低倍解析影像,(b) (c) 高倍 解析影像,(d) 選區電子繞射圖譜..88 圖4-43 XRD晶體結構資料庫(1997 JCPDS-ICDD:36-1451)...88 表目錄 表1-1 氧 化鋅的基本性質 . . . 2 表3-1 本實驗製備之基板 . . . 28 表3-2 本實驗製備之藥品 . . . 28 表4-1 不同濃度的混合溶液成 長氧化鋅奈米柱之直徑、高度與高寬比關係表.......47 表4-2 不同濃度的混合溶液成長氧化鋅奈米柱之元素百分 比...49 表4-3 不同濃度的混合溶液成長氧化鋅奈米柱之電子場發射所計算的斜率及場發射因子..54 表4-4 不同溫度 柱之元素百分比.....65 表4-6 不同溫度的混合溶液成長氧化鋅奈米柱之電子場發射所計算的斜率及場發射因子...69 表4-7 不同時間的混合溶液成長氧化鋅奈米柱之直徑、高度與高寬比關係表.......78 表4-8 不同時間的混合溶液 成長氧化鋅奈米柱的元素百分比....81 表4-9 不同時間的混合溶液成長氧化鋅奈米柱之電子場發射所計算的斜率及場發 射因子...84

REFERENCES

[1]莊萬發編撰,超微粒子理論應用,復漢出版社。

- [2]S. Iijima, Nature 354, 56 (1991).
- [3]H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, Appl. Phys., 91, 1993-1997 (2002).
- [4]R. Wang, L. H. King and A. W. Sleight, J. Mater. Res., 11, 1659 (1996).
- [5]Z. L.Wang, Adv. Funct. Mater., 14, 943 (2004).
- [6]L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 113, 2826 (1991).
- [7]C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002).
- [8]B. Liu and H. C. Zeng, Langmuir, 20, 4196 (2004).
- [9]X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, Mater. Chem. Phys., 78, 99 (2002).
- [10]L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).
- [11]L. Vayssieres, K. Keis, A Hagfeldt and S. E. Lindquist, Chem. Mater., 13, 4395 (2001).
- [12]L. Vayssieres, Adv. Mater., 15, 464 (2003).
- [13]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie and M. J. Mcdermott, J. Am. Chem. Soc., 124, 12954 (2002).
- [14]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed., 42, 3031 (2003).
- [15]Y. Tak and K. Yong, J. Phys. Chem. B, 109, 19263 (2005).
- [16]K. Govender, D. S. Boyle, P. B. Kenway and P. O ' Brien, J. Mater. Chem., 14, 2575 (2004).
- [17] H. Nagayama, H. Honda and H. Kawahera, J. Electrochem. Soc., 135, 2013 (1998).
- [18] Deki, Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett., 25, 433 (1996).
- [19]S. Yamabi and H. Imai, Chem. Lett., 30, 220 (2001).
- [20]S. Yamabi and H. Imai, Chem. Lett., 14, 609 (2002).
- [21]K. Tsukuma, T. Akiyama and H. Imai, J. Non-Cryst. Solids, 210, 48 (1997).
- [22] M. Izaki and O. Shinohara, Adv. Mater., 13, 142 (2001).
- [23]F. Vigu?? P. Venn?縵u?嫳, S. V?膾ian, M. La?伳t and J.-P. Faurie, Appl. Phys. Lett., 79, 194 196 (2001).
- [24] H. L. Hartnagel, A. K. Jain and C. Jagadish, Semiconducting Transpartent Thin Films, Institute of Physics Publication, pp.17 (1998).
- [25]A. Wei, W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan and W. Hung, Nanotechnology, 17, 1740 (2006).
- [26]Z. M. Liaoa, H. Z. Zhangb, Y. B. Zhoua, J. Xua, J. M. Zhang and Da-Peng Yua, Phys. Lett., 4505-4509 (2008).
- [27] K. Yu, Z. Jin, X. Liu, Z. Liu and Y. Fu, Mater. Lett., 2775-2778 (2007).
- [28]Y. S. Cui, S. Y. Zhang, J. Chen, D. P. Yu, S. L. Zhang, L. Niu and J. Z. Jiang, Appl. Phys. Lett., 263113-263113-3 (2007).
- [29] M. Law, L. E. Greene, J. C. Johnson, Saykallyl and P. Yang, Nat. Mater., 4455-459 (2005).
- [30]K. Kakiuchi, E. Hosono and S. J. Fujihara, Photochem. Photobio. A. Chem., 179, 81-86 (2006).
- [31]E. Neshataeva, T. K?即mell, G. Bacher and A. Ebbers, Appl. Phys, Lett., 94, 091115 (2009).
- [32]Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291 (2001) 1947.
- [33]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng, Appl. Phys. Lett., 78, 407 (2001).

[34] J. H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth, 226, 493 (2001). [35]J. Y. Lee, Y.S. Choi, J.H. Kim, M. O. Park and S. Im, Thin Solid Films, 403, 553 (2002). [36]W. I. Park, D. H. Kim, S. W. Jung and G. Yi, Appl. Phys. Lett., 80, 4232 (2002). [37]C. L. Wu, Li Chang, H. G. Chen, C. W. Lin, T. F. Chang, Y. C. Chao and J. K. Yan, Thin Solid Films, 498, 137 (2006). [38]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks and R. P. H. Chang, Chem. Mater., 17, 1001 (2005). [39]G. Zhang, Q. Zhang, Y. Pei and L. Chen, Science 53-56 (2004). [40] M. Y. Gea, H. P. Wua, L. Niua, J. F. Liua, S. Y. Chenb, P. Y. Shenc, Y. W. Zenga, Y. W. Wanga, G. Q. Zhanga and J. Z. Jianga, J. Cryst. Growth, 305, 162-166 (2007). [41]S. H. Yi, S. K. Choi, J. M. Jang, J. A Kim and W. G. Jung, J. Colloid Interface Sci., 313, 705-710 (2007). [42]G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur and M. Willander, J. Nanomater., 269692, 9 (2011). [43]J. B. Cui, C. P. Daghlian, U. J. Gibson, R. P?卲che, P. Geithner and L. Ley, Appl. Phys., 97, 044315 (2005). [44]許浩承,以水熱法成長氧化鋅奈米線"清華大學碩士論文,2004。 [45]C. Y. Lee, T. Y. Tseng, S. Y. Li and P. Lin, Nanotechnology, 16, 1105 (2005). [46]K. Govender, D. S. Boyle, P. B. Kenway and P. O ' Brien, J. Mater. Chem., 14, 2575 (2004). [47]W. J. Li, E. W. Shi, W. Z. Zhong and Z. W. Yin, J. Cryst. Growth, 203, 186 (1999). [48]Z. Zhou, W. Peng, S. Ke and H. Deng, J. Mater. Process. Technol., 89, 415 (1999). [49]M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio and H. Saitoh, Jap. J. Appl. Phys., 38, L586 (1999). [50] M. H. Hwang, Science, 292, 1897 (2001). [51]Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng and Z. Q. Chu, J. Cryst. Growth, 234, 171 (2002). [52]P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. -J. Choi, Adv. Funct. Mater., 12(5), 323 (2002). [53]S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett., 363, 134 (2002). [54]S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Cryst. Growth, 247, 357 (2003). [55] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett., 363, 123 (2002). [56]Y. C. Wang, Electrochem. Solid-State Lett., 5, C53 (2002). [57]L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, Chem. Mater., 13, 4395 (2001). [58]J. Q. Hu, Synthesis of uniform hexagonal prismatic ZnO whiskers, 14, 1216 (2002). [59]Y. C. Wang, I. C. Leu, M. H. Hon, Electrochem. Solid-State Lett., 5, 4, C53 (2002). [60]R. F. Service, Science, 895, 276 (1997). [61]R. A. Laudise, A. A. Ballman, J. Phys. Chem., 64 (5) 688 (1960). [62] H. Ohta, M. Orita, and M. Hirano, J. Appl. Phys., 89(10), 5720-5725 (2001). [63] H. Kawazoe, M. Tasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature (London), 939-942, 389 (1997). [64]A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, Appl. Phys. Lett., 73(2), 220-222 (1998). [65]Y. R. Ryu, W. J. Kim and H. W. White, J. Cryst. Growth, 219, 419-422 (2000). [66]郭旭祥,國立成功大學材料科學及工程學系碩士論文(2000)。 [67] J. W. Shim, J. W. Kim, S. H. Han, I. S. Chang, H. K. Kim, H. H. Kang, O. S. Lee and K. D. Suh, Phys. Eng., 207, 105-111 (2002). [68]Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, Ki-Tea Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen and T. Goto, J. Cryst. Growth, 181, 165-169 (1997). [69]Y. J. Xing, Z. H. Xi, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Z. Q. Xue and D. P. Yu, Appl. Phys., 80, 1527-1530 (2005). [70]鄭聖賢,氧化鋅奈米線成長技術研究及特性探討,國立成功大學電機工程系研究所碩士論文(2004)。 [71]S. Deki, Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett., 25, 433 (1996). [72]Z. Chen, L. Gao, J. Cryst. Growth, 293, 522 (2006). [73]S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim and W. G. Jung, J. Colloid Interface Sci., 313, 705-710 (2007). [74] D. Vernardou, G. Kenanakis, S. Couris, A. C. Manikas, G. A. Voyiatzis, M. E. Pemble, E. Koudoumas and N. Katsarakis, J. Cryst. Growth, 308, 105-109 (2007). [75]X. Qian, H. Liu, Y. Guo, Y. Song and Y. Li, Nanoscale Res Lett., 3, 303-307 (2008). [76]S. L. S. Jacoby, J. S. Kowalik and J. T. Pizzo, Iterative Methods for Nonlinear Optimization Problems, Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN:0-13-508199-X, pp. 79-83 (1972). [77] R. H. Fowler and L. W. Nordheim, Proceedings of Royal Society of London, 119, 173-181 (1928). [78]劉漢英,以水熱法製備奈米結構氧化鋅電極應用於染料敏化太陽能電池之研究,大葉大學電機工程系碩士論文(2008)。 [79]李建宏,氧化鋅奈米柱陣列成長特性,國立成功大學材料科及工程學系博士論文(2009)。 [80]邱晉億,低維度奈米結構氧化鋅之製備與特性量測,南台科技大學機械工程研究所碩士論文(2006)。 [81]顏宏全,尖狀氧化鋅奈米柱陣列之製備與場發射特性之研究,國立交通大學電子工程學系電子研究所碩士論文(2008)。