The Control Strategy Development for Fuel Economy of a Parallel Hydraulic Hybrid Vehicle

張文順、陳志鏗

E-mail: 361221@mail.dyu.edu.tw

ABSTRACT

Hybrid Vehicle (HV) is a new technology in automotive industry. Hydraulic Hybrid Vehicles (HHVs) can participate in reducing fuel consumption and environmental protection. HHVs are purely based on hydraulic hybrid technology and hydraulic components which are used widely day by day. Hydraulic hybrid vehicle has some advantages which the other kinds of HV don ' t have: high power density, not flammable, lightweight and so on. However, there are some limitations: low energy density, no power grid plug-in capability. Anyway, HHV should be considered as a good technology for fuel economy and environment. Based on Matlab/Simulink environment, especially the SimScape Toolbox inside, Parallel Hydraulic Hybrid Vehicle (PHHV) simulation model for the new system is developed in this thesis. The simulation models include all the main system components such as the vehicle, the oil tank, the accumulators, the hydraulic pump/motor and the internal combustion engine (ICE). The power management is implemented based on available hydraulic power and ICE ' s power. The main purpose is to evaluate the average fuel economy for the HHV with the added hydraulic hybrid system, then to establish the control strategy development for fuel economy of a PHHV. The models are tested basing on the urban driving cycles. The simulations results with various driving cycles and control strategies have shown significant improvement in the fuel economy for the constructed model of PHHV.

Keywords : Parallel Hydraulic Hybrid Vehicle、 IC Engine、 Accumulator、 Pump/Motor、 PHHV Simulation、 PHHV Control Strategy

Table of Contents

Inside Front Cover Signature Page ABSTRACT		
ACKNOWLEDGEMENTS v TABLE O		
FIGURES ix LIST OF TABLES	xiii Chapter I. INTROI	DUCTION
1 1.1 Energy Demand	1 1.2 Environmental Effects Of Fossil F	uel Use
3 1.3 Imperative Need Of Hybrid Technology	4 1.4 Literature Review	5 1.5
Statement of the problem and Objective		
Hydraulic Hybrid Vehicle	9 2.1.1 Historic Brief of Hybrid	Vehicle
9 2.1.2 Classifications of hybrid vehicle	10 -vii-2.2 Hydraulic Hybrid Vehicle	13
2.2.1 Fundamental of Hydraulic Hybrid Vehicle 13 2.2.2 Pa	rallel HHV 15 2.	.2.3 Series HHV
OF PHHV 21 3.1 Structure of PHHV	21 3.1.1 Proposed Structure	21
3.1.2 Combustion Engine 29 3.1.4 Hydraulic 23 3.1.3 Vehicle System		
Pump/Motor		
43 3.2.1 Internal Combustion Engine Model		
45 3.2.2 Vehicle Dynamics model		
49 3.2.4 Accumulator Model 54 3.2.6 Hydraulic auxiliary		
component blocks		
A PHHV		
strategy 59 4.1.2 Improved control strategy		-
4.2.1 Engine Throttle Controller		
of operating power engine for fuel economy 71 4.3.1 Case Study 1-The 1st driving cycle		
2nd driving cycle		

REFERENCES

[1] Bin Wo, Chan-Chiao Lin, Zoran Filipi, Huei Peng and Dennis Assanis, "Optimal Power Management for a Hydraulic Hybrid Delivery

Truck, "Vehicle System Dynamics 2004, Vol.42, Nos. 1-2, pp.23-40 [2] Canadian Manufacturing, "Chrysler, EPA to design Hybrid Hydraulic mini-van," available online at

http://www.canadianmanufacturing.com/design-engineering/news/chrysler-epa-to-design-hybrid-hydraulic-mini-van-21119 [3] Design Aerospace LLC, "Pump, Hydraulic – Description," available online at

http://www.daerospace.com/HydraulicSystems/AccumulatorHydraulicDesc.php [4] Dewey C., Elder, F.T., and Otis, D.R., 1974,

"Accumulator-Charged Hydrostatic Drive for Cars Saves Energy, "Hydraulics and Pneumatics, pp. 180-183, 1974 [5] Economic Research,

" Crude Oil: West Texas Intermediate (WTI)-Cushing, Oklahoma (DCOILWTICO), " available online at

http://research.stlouisfed.org/fred2/series/DCOILWTICO/ [6] Ehsani, M., Gao, Y., Gay. Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, "Second Edition, CRC Press, 2005 [7] Energy Efficiency & Renewable Energy, "Vehicle Technologies Program, "available online at http://www1.eere.energy.gov/vehiclesandfuels/technologies/systems/hybrid_electric_vehicles.html [8] EPA, "Hydraulic Hybrids, "available online at http://www.epa.gov/otaq/presentations/diesel/hydraulic-hybrid-hostler.pdf [9] Fitch, E.C., Hong, I.T., "Hydraulic Component Design and Selection," BarDyne, Inc., 2007.

[10] Fuhs, A.E., "Hybrid vehicles and the future of personal transportation," pp. 15&37CRC Press, 2009.

[11] Green Energy Choice, "Fossil Fuels: How do they negatively affect the environment?," available online at

http://www.greenenergychoice.com/green-guide/fossil-fuels.html [12] Hybrid vehicle history, available online at

http://www.hybrid-vehicle.org/hybrid-vehicle-history.html [13] Hydraulic Pump & Motor Troubleshooting

http://www.hydraulicmotorpumps.com/hydraulic-bent-axis-motors.html [14] Institute for Energy Research, "Fossil energy," available online at http://www.instituteforenergyresearch.org/energy-overview/fossil-fuels/ [15] Leon, A., Tanoue, K., Yanagihara, H., and Kusumi, H., "Hybrid is a Key Technology for Future Automobile," Hydrogen Technology: mobile and portable applications, pps. 236-239, Springer, 2008 [16] Merriam-Webster, "Visual Dictionary Online," available online at

http://visual.merriam-webster.com/transport-machinery/road-transport/types-engines/gasoline-engine_1.php [17] National Aeronautics and Space Administration, Goddard Institute for Space Studies, "GISS Surface Temperature Analysis," available online at

http://data.giss.nasa.gov/gistemp/graphs_v3/ [18] Permo-Drive, "The hybrid solution for urban commercial vehicles," available online at http://www.permo-drive.com/tech/index.htm [19] Pourmovahed, A., Beachley, N.H., and Fronczak, F.J., "Modeling of a Hydraulic Energy Regeneration System - Part II: Experimental Program," AEME Journal of Dynamic Systems, Measurement, and Control, pp.155-159, 1992 [20] Stan Miller, "AQMD Hydraulic Hybrid Vehicle Forum and Technical Roundtable," International Truck and Engine, November 15, 2007 [21] Tobul, "Bladder-Type Accumulators," available online at

http://www.tobul.com/index.php?option=com_content&task=view&id=25&Itemid=51 [22] US Environmental Protection Agency, "How Parallel Hydraulic Hybrid Vehicle Work," available online at http://www.epa.gov/otaq/technology/research/how-it-works-parallel.htm [23] US Environmental Protection Agency, "How Series Hydraulic Hybrid Vehicle Work," available online at

http://www.epa.gov/otaq/technology/research/how-it-works.htm [24] Wojciechowski, P.H. and Searl Dunn, H., " Energy regeneration and conversion efficiency in a hydraulic hybrid propulsion system, " High Speed Ground Transportation Journal, pp. 383-392, 1975.