A crest factor reducing method for the OFDM system generating by IDFT

李奇威、李金椿

E-mail: 345384@mail.dyu.edu.tw

ABSTRACT

A Crest Factor (CF) reduction method is proposed for the OFDM system that is generated by Inverse Discrete Fourier Transform (IDFT). By reducing the number of bits transmitted by an OFDM symbol, the crest factor can be reduced as the number of bits transmitted by a OFDM symbol decreases. The simulation results can confirm the reducing number of bits transmitted by an OFDM symbol. However, the calculation criterion is based on a CCDF of . From 4 bits to 3 bits and 2 bits, a reduction of 2.2 dB and 3.4 dB in crest factor can be obtained, respectively. As a result, we found that the proposed method is able to reduce the CF effectively.

Keywords: IDFT、Crest Factor、PAPR、CCDF

Table of Contents

封面內頁 簽名頁 中文摘要...........	iii 英文摘要
iv 誌謝	
vi 圖目錄viii 表目錄..
	.x 第一章 緒論 1.1 研究動機
. 11.2 章節介紹	2 第二章 正交分頻多工系統的原理與介紹 2.1 正交分頻多工系
統簡介............4 2.2 OFDM系紹	t架構
7 2.4 保護區間與循環前置	🕯
13 2.6 OFDM系統的正交性	
17 第三章 降低峰對均值功率比技術 3.	1峰對均值功率比過高所造成的問題 193.2峰對均值功率
比..............20 3.3 OFDM系	系統產生的非線性問題 21 3.4降低OFDM系統PAPR
的方法 24 3.4.1編碼法	
25 3.4.3多訊號表示法	
訊號模型.......................	33 4.2 峰對均值功率比之機率統計CCDF 35 4.3 模擬結果
	結論 參考文獻
. 43	

REFERENCES

- [1] ETSI, "Radio broadcasting system: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers," ETS 300 401 v1.3.2, Sept. 2000.
- [2] ETSI, "Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television," EN 300 744 v1.3.1, Aug. 2000.
- [3] IEEE, "part 11: Wireless LAN Medium Access control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band," IEEE Std 802.11a-1999, Sept. 1999.
- [4] ANSI, "Asymmetric digital subscriber line (ADSL) metallic interface," ANSI/TIEI/9J-007, Aug. 1997.
- [5] R.van Nee and R. Prasad, OFDM Wrieless Multimedia Communications: Artech House, 2000, pp. 229-253.
- [6] G. Karam and H. Sari, "Analysis of predistortion, equalization and ISI cancellation techniques in digital radio systems with nonlinear transmit amplifiers," IEEE Tran. On Comm., vol. 37, no. 12, pp. 1245-1253, Dec. 1989.
- [7] L. C. Cimini Jr., "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Trans. Commun., vol. 33, no. 7, pp. 665-675, July 1985.
- [8] Tao Jiang and Guangxi Zhu, "Complement Block Coding for Reduction in Peak-to-Average Power Ratio of OFDM Signals," IEEE Radio Communications, pp. 17-22, Spet. 2005.
- [9] Yunjun Zhang, Abbas Yongacoglu, Jean-Yves Chouinard and Liaug Zhang, "OFDM Peak Power Reduction By Sub-Block Coding and It's Extended Versions," Vehicular Technology Conference IEEE 49th, vol. 1, pp. 695-699, May 1999.

- [10] R. O 'Neill and L. B. Lopes, "Envelope Variat and Spectral Splatter in Clipped Multicarrier Signals," Proc. IEEE PIMRC '95. Toronto, Canada, pp. 71-75, Sept. 1995.
- [11] R. W. Bami, R. F. H. Fischer and J. B. Hber, "Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping, "IEEE Electronics Letters, vol. 32, pp. 2056-2057, Oct. 1996.
- [12] S. H. Han and J. H. Lee, "Modified selected mapping technique for papr reduction of coded ofdm signal," IEEE Transactions Broadcast., vol. 50, pp. 335-341, Sept. 2004.
- [13] Seog Geun kang, Jeong Goo Kim and Eon Kyeong Joo, "A Novel Subblock Partition Scheme for Partial Transformit Sequence OFDM, "IEEE Transactions on Bradcasting, vol. 45, no. 3, pp. 333-338, Sept. 1999.
- [14] Leonard J, Cimino and Nelson R.Sollenberger, "Peak-to-Average Power Ratio Reduction of an OFDM Signal Using Partial Transmit Sequence," IEEE Communication Letters, vol. 4, no. 3, pp. 511-515, March 2000.
- [15] Asma Latif and N. D. Gohar, "Reduction Peak-to-Average Power Ratio Using Partial Transmit Sequence in OFDM Systems," Multi Topic Conference, pp. 126-130, Dec. 2003.
- [16] Zhihua Zhang, Yucheng Wu and Jianhui Hou, "An Improved Scheme of Reducing Peak-to-Average Power Ratio in OFDM Systems, "IEEE 6th CAS Symp. on Emerging Technologies, May 2004.
- [17] Xiao Huang Jianhua Lu, Junli Zheng, J. Chuang and Jun Gu, "Reduction of peak-to-average power ratio of OFDM signals with Companding transform," IEEE Electronics Letters 12th, vol. 37, no. 8, pp. 506-507, April 2001.
- [18] Tao Jiang, Yang Yang and Yong-Hua Song, "Exponential Companding Technique for PAPR Reduction in OFDM Systems," IEEE Transactions on Bradcasting, vol. 51, no. 2, pp. 244-248, June 2005.
- [19] Tao Jiang and Guangxi Zhu, "Nonlinear Companding Transform for Reducing Peak-to-Average Power Ratio of OFDM Signals," IEEE Transactions on Bradcasting, vol. 50, no. 3, Sept. 2004.
- [20] Yuanbin Guo and Joseph R. Carallaro, "Reducing Peak-to-Average Power Ratio in OFDM Systems by Adaptive Dynamic Range Companding," Dept. of Electrical and Computer Engineering by NOKIA Corporation, 2003.
- [21] Zou W. Y., and Yiyan Wu, "OFDM: An overview," IEEE Trans. On Broadcasting, 1995.