The Study of Edge Fault-Tolerance for Hamiltonian Cycles and Hamiltonian Paths Passing through Prescribed Edges of Star

游宗育、洪春男

E-mail: 343882@mail.dyu.edu.tw

ABSTRACT

The star graph is a famous interconnection network. In this thesis, we discuss the edge fault tolerance for Hamiltonian cycle and Hamiltonian path passing through prescribed edges for star graph. Let F_e be the set of faulty edges of S_n and E_0 be the edge set of some pairwise vertex-disjoint paths of S_n . At first, we prove all edges of E_0 lie on a Hamiltonian cycle of S_n - F_e , if $|F_e|$? $|F_e|$?

Keywords: star graph, fault tolerance, Hamiltonian cycle, Hamiltonian path, prescribed edges

Table of Contents

封面內頁 簽名頁 ABSTRACT		
iii 中文摘要		
iv 誌謝		
v 目錄		
vi		
表目錄		
Chapter1 Introduction	1	
Chapter2 Definitions and Basic Properties	4 Chapter3	
Hamiltonian cycles and paths passing through prescribed Edges		
paths passing through more prescribed Edges	26 Chapter5 Conclusion	
	49	

REFERENCES

- [1]S.B. Akers, D. Harel, B. Krishnamurthy, "The star graph: an attractive alternative to the n-cube", Proc. Internat. Conf. Parallel Processing, pp. 393-400, 1987.
- [2]R. Balakrishnan, K. Ranganathan, "A Textbook of Graph Theory".
- [3]Shou-Yi Cheng, Jen-Hui Chuang, "Varietal Hypercube-A New Interconnection Network Topology for Large Scale Multicomputer," IEEE Transactions on Computers, pp.0-8186-655-6, 1994 [4]J. Duato, S. Yalamanchili, L. Ni, "Interconnection Networks: An Engineering Approach", IEEE Computer Society Press, 2003.
- [5]Tom\$\acute{a}\check{s}\$ Dvo\$\check{r}\acute{a}\$k, ``Hamiltonian cycles with prescribed edges in hypercubes," SIAM J. Discrete Math. 19 (2005) 135-144.
- [6]Tom\$\acute{a}\check{s}\$ Dvo\$\check{r}\acute{a}\$k, Petr Gregor, ``Hamiltonian paths with prescribed edges in hypercubes,'' Discrete Mathematics 307 (2007) 1982-1998.
- [7]K. Efe, "A variation on the hypercube with lower diameter", IEEE Transactions on Computers, pp. 1213-1316, 1991.
- [8]S. Gao, B. Novick and K. Qiu, "From hall's matching theorem to optimal routing on hypercubes," Journal of Combinatorial Theory, pp. 291-301, 1998.
- [9]Sun-Yuan Hsieh, Gen-Huey Chen, and Chin-Wen Ho, "Longest fault-free paths in Star Graphs with Vertex Faults," Theoretical Computer Science, pp. 215-227, 2001.
- [10]Sun-Yuan Hsieh, "Embedding Longest Fault-Free Paths onto Star Graphs with More Vertex Faults," Theortical Computer Science, pp. 370-378, 2005.
- [11]Sun-Yuan Hsieh, Gen-Huey Chen, and Chin-Wen Ho, "Longest fault-free paths in star graphs with edge faults," IEEE Transactions on Computers, pp. 960-971, 2001.

[12] Chun-Nan Hung, Tsung-Yu Yu, "The Hamiltonian cycle and Hamiltonian paths passing through prescribed edges in a star graph with faulty edges," Proceedings of the 27th Workshop on Combinatorial Mathematics and Computation Theory, (2010) 207-215 [13] F. T. Leighton, "Parallel Algorithms and Architectures: Arrays, Trees and Hypercubes," Morgan Kaufmann, San Mateo, 1992.

[14] Tseng-Kuei Li, Jimmy J.M. Tan, Lih-Hsing Hsu, "Hyper hamiltonian laceability on edge fault star graph," Information Sciences 165 (2004) 59-71.

[15]C. K. Lin, H. M. Huang, and L. H. Hsu, "The super connectivity of the pancake graphs and the super laceability of the star graphs," Theoretical Computer Science, pp. 257-271, 2005.

[16]S. Madhavapeddy, I. H. Sudborough, "A topological property of hypercubes: node disjoint paths," Proc. of the 2th IEEE Symposium on Parallel and Distributed Processing, pp. 532-539, 1990.

[17] M. Noakes, W.J. Dally, "System design of the J-machine, in: Proceedings of the Advanced Research in VLSI", pp. 179-192, 1990.

[18]Y. Saad and M. H. Schultz, "Topological properties of hypercubes," IEEE Transactions on Computers, pp. 867-872, 1998.

[19]SHELDON B. AKERS, "A Group-Theoretic Model for Symmetric Interconnection Networks," IEEE Transactions on Computers, pp.555-566, 1989.

[20] Wen-Qing Wang, Xie-Bin Chen, "A fault-free Hamiltonian cycle passing through prescribed edges in a hypercube with faulty edges," Information Processing Letters 107 (2008) 205-210.