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ABSTRACT
In recent years, with world reserves of petroleum fast depleting, ethanol has emerged as most important alternative resource for
biofuel and has generated a great deal of research interest in ethanol fermentation. Production of ethanol from renewable cellulosic
resources may improve energy availability, decrease atmospheric CO2 accumulation and air pollution. Therefore, this study is to use
microbial conversion of cellulosic waste into ethanol, the result is divided into two parts: The first: In order to produce CMCase that
can be transformed to reducing sugar, more than 3 bacteria isolates were screened from food factory, paper sludge, insect intestinal
bacteria and then identified according to their 16S rDNA gene sequences. The three strain with high cellulose degrading capability
were identified as Bacillus subtilis CELL, Bacillus sp. and Arthrobacter woluwensis Wul, respectively. Additionally, the effects of the
fermentation parameters such as initial pH, temperature, and nitrogen source on the CMCase production were studied using
carboxymethyl cellulose (CMC) as the carbon source. CMCase from Arthrobacter woluwensis Wul, Bacillus subtilis CELL and
Bacillus sp. was maximally secreted at 37° C, initial pH 5.0, 6.0, 7.0 with are all 15 g/L of CMC as carbon source, and 1, 5, 5 g/L
of yeast extract as organic nitrogen source, respectively. The second: The fermentative ability of Candida tropicalis Wul yeast to
produce ethanol was examined. The effects of the fermentation parameters such as initial stirred speed, and nitrogen source on the
ethanol production were studied using glucose as the carbon source in batch cultures. Ethanol from Candida tropicalis Wul was
maximally yield at 30° C, static cultures with 20 g/L of glucose as carbon source, and 2.5 g/L of (NH4)2SO4 as nitrogen source,
respectively. Additionally, conversion of glucose to ethanol by immobilized C. tropicalis Wul beads were examined. The results
showed that the maximum ethanol productivity of immobilized C. tropicalis Wul was 0.33 g/L/h with 50 g/L glucose at 3000 and
50 rpm.
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