考慮翻覆安全之大客車骨架結構最佳化設計

黎江南 陳啟明 陳凌 梁卓中

摘 要
巴士是大眾運輸工具之重要一環，而巴士在翻覆意外中，上層結構會嚴重變形，且乘客及駕駛會承受重要的傷害。因此如何設計一輛巴士的上層建築，使巴士具有良好的勁度則為一極重要的工作。歐盟及美國均強力推動巴士翻覆的安全法規，歐規 ECE R66及美國聯邦車輛安全法規 FMVSS 220。然而強化巴士上層結構卻會造成重量增加，因而在結構設計上考量輕量化亦為一重要的設計主題。因此，本論文首先研究歐規 ECE R66及美規 FMVSS 220在安全規範上之不同處；其次，在保持重量不變及強度水準不變的條件下，進行巴士上層結構的最佳化設計研究以減少乘客的損傷；最後，參考巴士骨架變形及存活空間的因素下來進行巴士結構輕量化的設計。 本論文利用 LS-DYNA的FEMB模組建構有限元素模型，其間並採用巴士上部連接處之處理乃採用車輛研究中心及車頂邊緣的連接處之實驗數據，並應用LS-DYNA進行求解。經比較研究歐規 ECE R66及美規 FMVSS 220巴士的側翻測試，對乘客艙及殘留空間之需求較為嚴格。此外，本論文進行簡化大客車骨架結構之最適化分析時，應用 LS-OPT中的連續回應表面法進行最適化的研究，發現能量吸收能力為大客車骨架結構最適化的一個重要的影響因素。本論文以上之研究成果應可提供未來大客車上層結構設計之參考應用。

關鍵詞 大客車翻覆、上層結構、ECE R66、FMVSS 220、能量吸收、輕量化、最適化方法、LS-DYNA、LS-OPT

目錄

TABLES OF CONTENTS AUTHORIZED COPYRIGHT STATEMENT iii ABSTRACT iv 中文摘要 vii ACKNOWLEDGMENTS ix TABLES OF CONTENTS x LIST OF FIGURES xiii LIST OF TABLES xv NOMENCLATURES xvii Chapter I. INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Legislation for Bus Rollover Protection 3 1.2.1 ECE R66 Regulation 3 1.2.2 FMVSS 220 Standard 5 1.3 Literature Review 6 1.3.1 Literature Survey of Physical and Virtual Rollover Tests 6 1.3.2 Literature Survey of Bus Structure Development and Lightweight Design Using Optimal Technique 9 1.4 Research Objectives and Scope 11 1.5 Research Framework and Process 12 Chapter II. COMPARATIVE ANALYSIS OF BUS ROLLOVER PROTECTION UNDER LEGISLATION FOR STANDARDS 19 2.1 LS-DYNA Introduction 19 2.1.1 Nonlinear Explicit Algorithm 20 2.1.2 Solution Procedure 21 2.1.3 Element, Material and Contact Models 22 2.2 Numerical Analysis Procedures for Bus Rollover Protection 24 2.2.1 ECE R 66 Numerical Procedure 24 2.2.2 FMVSS 220 Numerical Procedure 25 2.3 Computational Models 25 2.3.1 Original Model – Model I 25 2.3.2 Strengthened Model – Model II 27 2.3.3 Survivor Space Definition of a Bus 27 2.4 Numerical Experiments for Bus Rollover Protection 27 2.4.1 ECE R66 Numerical Simulation 27 2.4.2 FMVSS 220 Numerical Simulation 28 2.5 Summary 29 Chapter III. OPTIMIZATION OF BUS FRAME STRUCTURE CONSIDERING THE ROLLOVER SAFETY 43 3.1 Optimization Methodology 44 3.1.1 LS-OPT Introduction 44 3.1.2 Response Surface Methodology 44 3.1.3 Successive Response Surface Method 48 3.2 Investigation of Vehicle Distortion Configuration following Absorbed Energy 48 3.2.1 Distortion Configuration of Vehicle following Absorbed Energy 49 3.2.2 Distortion Configuration of Side Wall Section following Absorbed Energy 49 3.3 Optimal Problem Considering on the Bus Superstructure 49 3.4 Design Variables 50 3.5 Strengthen Bus Superstructure Stiffness by One Variable Optimization 51 3.5.1 Sampling Process 52 3.5.2 Regression Analysis 52 3.5.3 Optimization Analysis 53 3.5.4 Verification of the Design 53 3.6 Strengthen Bus Superstructure Stiffness by Two Variables Optimization 53 3.6.1 Optimization Process 54 3.6.2 Results and Verification of Design 54 3.7 Summary 55 Chapter IV. LIGHTWEIGHT OPTIMIZATION CONSIDERING ROLLOVER SAFETY 69 4.1 Body skeleton density evaluation 69 4.2 Investigate the distortion configuration of the side wall and roof sections of the vehicle for lightweight and strengthening purposes 70 4.3 Lightweight and Safety Optimization of Bus Superstructure 71 4.3.1 The optimisation problem 71 4.3.2 Design variables 72 4.3.3 Optimisation process 73 4.3.4 Verification of design 73 4.4 Summary 74 Chapter V. RESULTS AND DISCUSSIONS 85 Chapter VI. CONCLUSIONS AND FURTHER STUDY 90 REFERENCES 93 LIST OF PUBLICATIONS 99 AUTOBIOGRAPHY 101

参考文獻


