ABSTRACT

Relationship of “processing/microstructure/mechanical-properties” of electrodeposited nickel was established to achieve better understanding of the annealing behaviors Ni deposits. 70 μm-thick Ni was electrodeposited onto copper plates from Ni sulfamate baths with the addition of various amounts of chloride and ammonium ions. Electroplating parameters studied include solution temperature, current density and pH. Ni deposits were then annealed at temperatures ranging from 200 to 600 ℃ for 1hr. Optical microscopy, scanning electron microscopy, transmission electron microscopy, and x-ray diffraction technique were used to characterize the microstructure and texture of Ni deposits, particularly the grain structure and lattice defects. Fibrous structure of [110] texture was observed for Ni deposits plated from 40 ℃ bath at current density less than 1 A/dm². Recrystallization and grain growth occur after annealing at temperatures higher than 400 ℃. Ni deposits plated at current density above 1 A/dm² show well-defined columnar grain structure with strong [100] texture. [100] oriented Ni deposits are softer and still exhibit columnar grain structure even after 600 ℃ annealing. Although Ni deposits plated at various current densities exhibit a bimodal grain structure, average grain size of Ni deposits increases with current density. In contrast, lattice defects of Ni deposits decreases with current density. For 40 ℃ baths, pH variations between 3.0 and 5.0 show little effect on the texture and structure of Ni deposits, which consist of columnar grains with [100] texture. Columnar grain structure still exists up to 600 ℃ annealing. Addition of ammonium and chloride ions modifies the electrocrystallization and growth of Ni deposits. For 40 ℃ bath, texture of Ni deposits change from strong [100] to weak [100], and then to weak [110] with the increase of ammonium ions in the bath. With the addition of 100 ppm ammonium ions into 50 ℃ bath, Ni deposits exhibit a mixture of [110] and [310] textures. Ni deposits with [110] and/or [310] textures suffer recrystallization after 400 ℃ annealing. Addition of 30g/l NiCl₂·6H₂O into 40 ℃ bath results in the texture change from [100] to weak [100]. [110] oriented Ni deposits are plated from 50 ℃ bath with the addition of 3 ~ 60g/l NiCl₂·6H₂O. Recrystallization of Ni deposits with weak [100] orientation and with [110] orientation occur after 400 ℃ annealing. In general, Ni deposits with inhibition textures, such as [110] and [310], tend to recrystallize after 400 ℃ annealing. In contrast, strongly [100] oriented Ni deposits still exhibit columnar grain structure even after 600 ℃ annealing.
電流密度的影響 4.1.1 XRD組織觀察 4.1.2 鍍鎳層的微小硬度 4.1.3 光學顯微金相觀察 4.1.4 平面向TEM試片觀察 4.1.5 橫截面TEM試片觀察

PH值的影響 4.2.1 XRD組織觀察 4.2.2 鍍鎳層的微小硬度 4.2.3 光學顯微金相觀察 4.2.4 平面向TEM試片觀察 4.2.5 橫截面TEM試片觀察

氨離子的影響 4.3.1 XRD組織觀察 4.3.2 鍍鎳層的微小硬度 4.3.3 光學顯微金相觀察 4.3.4 平面向TEM試片觀察 4.3.5 橫截面TEM試片觀察

氯離子的影響 4.4.1 XRD組織觀察 4.4.2 鍍鎳層的微小硬度 4.4.3 光學顯微金相觀察 4.4.4 平面向TEM試片觀察 4.4.5 橫截面TEM試片觀察

銅/鎳界面、擴散層的觀察 4.5 鍍鎳層的磨耗試驗

第五章 討論

第六章 結論

第七章 展望

參考文獻

2. 李鴻年,張紹恭,張炳乾,宋子玉等編著, "實用電鍍工藝", 國防工業出版社, 1991, 154-203
3. 蘇癸陽編譯, "實用電鍍理論與實際", 復文書局
5. 陳志雄, "大鋼胚連銅模鍍鎳研究", 技術與訓練,中鋼研究發展報告, 1986, 11-19
11. 彭裕民譯, "鍍鎳的基本溶液及工業電鍍的應用", Vol.64, 54-64
18. 彭坤增, "銅模鍍鎳層組織及性質受熱處理之研究", 大葉大學機械工程研究所碩士論文, 1998