Production of Transgenic Eustoma grandiflorum Expressing Antifungal Protein (Cp-AFP3)

曹金恩、洪淑嫻 余聰安
E-mail: 9806850@mail.dyu.edu.tw

ABSTRACT
Eustoma grandiflorum is one of the economically important crops in Taiwan. Fungal diseases cause serious economical loss of Eustoma grandiflorum and fungicides are used to protect against Eustoma grandiflorum diseases. In consideration of the harmful effects to the environmental ecosystem, the transgene approach is considered as a good alternative to control the fungal diseases. A transformation vector carrying anti-fungal protein gene Cp-AFP3 from Carica papaya L. was kindly provided by Dr. Xiao. Transgenic Eustoma grandiflorum lines carrying Cp-AFP3 genes were generated in this investigation and the resistance of independent transgenic lines against Rhizoctonia solani was evaluated under in vitro condition. The transgene was present in the regenerants as confirmed by PCR. Lines 3-2, 8 and 17 exhibited higher levels of resistance to R. solani in vitro infection and RT-PCR analysis indicated these lines expressing relatively higher as assorted by levels of transgene transcript. Photomicrographs under fluorescence microscopy showing GFP proteins was apparently expressing in the higher resistant transgenic leaves.

Keywords: anti-fungal protein, transgenic Eustoma grandiflorum, Rhizoctonia solani
2.2.2.2 農桿菌之培養基配製與條件

2.2.2.3 基因轉殖培養

2.2.3 轉基因株系之分子分析

2.2.3.1 植物基因組DNA之抽取法

2.2.3.2 聚合酵素鏈鎖反應

2.2.4 轉基因植物之抗病評估及分析

2.2.4.1 供試菌株及其特性

2.2.4.2 轉基因洋桔梗之瓶內抗病評估

2.2.4.3 植物總RNA抽取法

2.2.4.4 反轉錄聚合酵素鏈鎖反應

2.2.5 轉基因植株GFP基因表現之分析

3.結果

3.1 洋桔梗再生系統與基因轉殖

3.2 轉基因洋桔梗株系分子分析

3.3 轉基因洋桔梗株系之接種抗病評估

3.3.1 轉基因洋桔梗株系之瓶內接種測試

3.4 轉基因洋桔梗株系轉基因轉錄體累積分析

3.5 轉基因洋桔梗株系GFP蛋白質表現分析

4.結論

3.5 轉基因洋桔梗株系GFP蛋白質表現分析

附錄

圖目錄

表目錄

表1. 洋桔梗以不同BA濃度再生條件試驗

表2. 轉基因洋桔梗株系進行Rhizoctonia solani瓶內接種之病徵表現情形

REFERENCES

1. 行政院農業委員會農糧署。2007。農業統計年報。

2. 余聰安。2001。木瓜微體繁殖與營養器官基因轉殖。國立中興大學植物學系博士論文。

3. 陳福?。1993。洋桔梗 園藝之友39.32-35。

4. 黃達雄。1992。洋桔梗(上)興農 283.45-49。

5. 張燕玲。2005。抗真菌轉基因甜瓜之構築。大葉大學分子生物學系研究所碩士論文。

6. 杨秀珠。1999。洋桔梗病害及防治。農業世界雜誌 190.32-40。

7. 廖家德。1994。臺灣立枯絲核菌(Rhizoctonia solani Kuhn)第四融合群菌株質體狀去氧核醣核酸的歧異性及其核酸定序。國立中興大學植物病理學研究所碩士論文。

8. 廖麗雅。1993。洋桔梗涼溫育苗及微體繁殖系統建立。國立中興大學園藝研究所碩士論文。

9. 賴宣妤。2002。青花菜之抗真菌蛋白基因。私立東海大學食品科學系。

10. 蔡雲鵬編。1991。台灣植物病害名彙 修訂3版。中華植物保護學會 中華民國植物病理學會印。604頁。

Kristensen, A.K., Brunsted, J.W., Nielsen, J.D., Mikkelsen, 21:1-34.

Klement, Z. 1982. Hypersensitivity. In phytopathogenic prokaryotes, volume 2 (Mount MS and

Kawabata, S., Kusuhara, Y., Li, Y. and Sakiyama, R. 1999. The regulation of

Masanobu, M., Masaki, I. and Ken'ichi, O. 2004. Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant

Deroles, S.C., Manson, D.G. and Davies, K.M. 1998. An antisense chalcone synthase cDNA leads to novol colour patterns in lisianthus (Eustoma

Bloor, S.J., Manson, D.G. and Davies, K.M. 1998. An antisense chalcone synthase cDNA leads to novol colour patterns in lisianthus (Eustoma

Coca, M., Bortolotti, C., Rufat, M., Penas, G.,Eritja,R., Tharreau, D., Martinez del Pozo, A., Messeguer, J. and

Coca, M., Bortolotti, C., Rufat, M., Penas, G.,Eritja,R., Tharreau, D., Martinez del Pozo, A., Messeguer, J. and

