2-Disjoint Geodesic Bipancyclicity of Hypercubes

胡偉諄、黃鈴玲

ABSTRACT

Let \(G = (V, E) \) be a graph. For any two vertices \(u, v \in V(G) \), a cycle \(C \) is called \((u,v)\)-geodesic if there exists a \(u-v \) shortest path of \(G \) lying on \(C \). A bipartite graph \(G \) is called geodesic bipancyclic if for any two vertices \(u, v \in V \), there exists a \((u,v)\)-geodesic cycle of every even length ranging from \(\max\{2d(u, v), 4\} \) to \(|V| \). In this thesis, we first show that the hypercube \(Q_n \) for \(n \leq 4 \) is geodesic bipancyclic when it has two adjacent fault vertices. Then we prove that \(Q_n \) is 2-disjoint geodesic bipancyclicity for \(n \leq 4 \). That is, given any four vertices \(u, v, x, y \) without forming \(u, x, v, y \) \(u, x, v, y \), \(u, y, v, y \) paths, and given any even integers \(l_1, l_2 \) such that \(l_1 + l_2 \leq 2n \), \(l_1 \leq \min\{2d(u, v) + 2, 2n\} \), and \(l_2 \leq \min\{2d(x, y) + 2, 2n\} \), there exist two disjoint cycles \(C_1 \) and \(C_2 \) in \(Q_n \) such that \(C_1 \) is a \((u,v)\)-geodesic cycle of length \(l_1 \), and \(C_2 \) is a \((x,y)\)-geodesic cycle of length \(l_2 \).

Keywords : Geodesic Bipancyclic、2–Disjoint Geodesic Bipancyclicity、Hypercube

Table of Contents

ABSTRACT

Chapter 1. Introduction

Chapter 2. Preliminaries

Chapter 3. Adjacent fault geodesic bipancyclicity

Chapter 4. 2-disjoint Geodesic embedding

Chapter 5. Conclusion

REFERENCES

