Leucine aminopeptidase (LAP) is widely applied in food industry to reduce the bitterness of protein hydrolysate by liberating the hydrophobic residues in the N terminus of peptides. For the overproduction of the enzyme, transgenic tomato plants had been developed in our previous work. The transgene, Aspergillus oryzae LAP, as well as the NPT II marker gene were introduced into tomato via Agrobacterium-mediated transformation. After antibiotic selection, approximately 100 independent lines were obtained.

Although two main LAP isoforms, LAP-A and LAP-N, are present in tomato, sequence comparison showed no apparent homology between the heterologous LAP and the endogenous LAPs. In this study, these transgenic plants were further identified and characterized. The enzyme activities were assayed firstly, and then, according to the level of activity, genomic PCR and RT-PCR were performed to confirm the presence of NPT II gene and Aspergillus LAP mRNA respectively. As expected, several transgenic plants showed higher enzyme activity than wild type, especially line 38; meanwhile, some showed no significant difference compared to wild type, such as lines 29, 34, and 67. Surprisingly, some lines were found to possess lower activity than wild type. Moreover, the characteristic analysis of the heterologous LAP showed some variations in enzymatic properties such as optimal temperature, optimal pH, and salt requirement. These results indicated that the Aspergillus LAP, expressed heterologously in tomato, differs from the original form, which is isolated from its natural source.

Keywords: Aspergillus oryzae, bitterness, leucine minopeptidase, tomato
2.2 實驗方法 ..10

2.2.1 Genomic DNA 之製備與純化10

2.2.2 NPTⅡ基因專一性引子之設計11

2.2.3 聚合? 鏈鎖反應鑑定轉基因植株11

2.2.4 瓊脂凝膠電泳 (Agarose gel electrophoresis) ..12

2.2.5 製備cDNA ..13

2.2.5.1 製備RNase-free 溶液..13

2.2.5.2 番茄Total RNA 之萃取..13

2.2.5.3 甲醛變性瓊脂凝膠電泳...14

2.2.5.4 LAP基因專一性引子之設計.......................................15

2.2.5.5 逆轉錄聚合? 鏈鎖反應...15

2.2.5.5.1 第一股 cDNA之合成..15

2.2.5.5.2 聚合? 鏈鎖反應..15

2.2.6 LAP之活性測定 ..16

2.2.6.1 LAP之酵素粗萃取..16

2.2.6.2 蛋白質濃度的測定 ..16

2.2.6.3 p-nitroaniline 的標準曲線製作................................17

2.2.6.4 酵素呈色法..17

3. 結果與討論 ..18

3.1 米麴菌與番茄 LAP基因之比較..18

3.2 番茄轉殖株之建立與鑑定..19

3.3 轉基因番茄LAP之酵素特性分析......................................20

3.3.1 LAP之最適反應pH值..21

3.3.2 LAP最適反應溫度...21

3.3.3 NaCl對LAP活性的影響...22

3.4 未來展望..23

4. 結論 ...24

參考文獻 ..32

附錄 ..35

REFERENCES

2. 管宜家 (2003) Aspergillus oryzae leucine aminopeptidase 基因的調控與表現, 碩士論文,分子生物學研究所,中興大學,台中。

3. 趙秀慧 (2000) Aspergillus oryzae leucine aminopeptidase 基因的選殖, 碩士論文,分子生物學研究所,中興大學,台中。

4. 鄭仁君 (2005) 基因轉殖番茄之育成碩士論文,分子生物學研究所,大葉大學,彰化。

5. 鄭靜桂 (1997) 蛋白質之水解與水解液之利用, 食品工業月刊 29: 10-17。

