ABSTRACT

The purpose of this study was integration of permeable reactive barrier (PRB) technology and immobilization for MTBE and BTEX contaminated groundwater treatment. This study was first investigated to make the immobilized bead highly strong stability. After conducting batch and column tests, it was integrated with PRB system. PRB was run at various concentrations of substrate and removal efficiency was monitored.

Results revealed that (1) Bead was formed with high stability with 2.46 hours and 6 hours immersed in solution of (5% H3BO3, 2.5% CaCl2) and 5% KH2PO4. (2) Bead has pore structure for bacteria occupancy, allowing oxygen and substrates transfer. (3) Results from batch experiments showed that: (3a) For toluene-degrading Pseudomonas sp. YATO411 strain, the most suitable value of initial biomass concentration for immobilizing was 26.7 mg/L; (3b) Rate of toluene removal was highest with 12.4 mg/L.h; (3c) When exposing at high concentration of toluene, immobilized cells were more effective than suspended cells; (3d) Pseudomonas sp. YATO411 was not only degrading toluene, but also used benzene and ethylbenzene as the source of carbon and energy; (3e) Methylibium petroleiphilum PM1 can be used for immobilization when bead was immersed in (H3BO3, CaCl2) for 0.5 hours, and KH2PO4 for 2.5 hours. (4) Results from column test showed that toluene removal increased along with increasing amount of bead. (5) Results from long term PRB monitoring showed that: (5a) MTBE removal has only shown significant increasing to 42.4% when Methylibium petroleiphilum PM1 was introduced to PRB system; (5b) When BTEX was shock loading to 80 ppm, integration PRB with immobilization of Pseudomonas sp. YATO411 has increased removal efficiency of B, T, and E to 99.4, 98.2, and 97.5 (%), comparing to 49.2, 48.6, and 62.9 (%), incase of non-integration.

Keywords : Permeable reactive barrier, immobilization, MTBE, BTEX, Methylibium petroleiphilum PM1, Pseudomonas sp. YATO411
Chapter II. CONCEPTS AND METHODS
2.5.1 Concept of PRB 12
2.5.2 Contaminant uptake mechanisms 15
2.6 Immobilization 19
2.7 RSM – Response surface methodology 21
2.8 SEM – Scanning electron microscopy 21

Chapter III. MATERIAL AND METHODS
3.1 Chemical and Instrument 23
3.2 ORC preparation 24
3.3 PRB system 25
3.4 Study the removal efficiencies of MTBE and BTEX 26
3.5 Effect of immobilized application 27
3.5.1 Immobilization process 27
3.5.2 Batch experiment with effect of immobilized application 28
3.5.3 Column test with effect of immobilized bead 30
3.5.4 Integration of PRB technology and immobilization 32

Chapter IV. RESULTS AND DISCUSSION
4.1 Optimum time immersed in CaCl2, H3BO3 and KH2PO4 34
4.2 Substrates absorption 38
4.3 PVA-alginate morphological observation 39
4.4 Batch experiment for toluene-degrading bacterial immobilization 43
4.4.1 Pseudomonas sp. YATO411 dry weight standard curve 43
4.4.2 Effect of initial biomass concentration on toluene removal efficiency 45
4.4.3 Effect of initial toluene concentration on removal efficiency 50
4.4.4 Comparing the removal efficiency by suspended vs. immobilized cells 54
4.4.5 Ability in degrading B, T, and E by Pseudomonas sp. YATO411 59
4.5 Batch experiment for MTBE-degrading bacterium immobilization 60
4.5.1 Methylibium petroleiphilum PM1 dry weight standard curve 60
4.5.2 Methylibium petroleiphilum PM1 immobilization process 61
4.6 Column test for toluene-degrading bacterial immobilization 65
4.7 Study the removal efficiencies of BTEX and MTBE in PRB system 68
4.7.1 Substrates removal efficiency before integration with immobilization 68
4.7.2 Substrates removal efficiency after integration with immobilization 72

Chapter V. CONCLUSION AND RECOMMENDATION
5.1 Conclusion 75
5.2 Recommendation 76

REFERENCES 78

LIST OF FIGURES
Figure 2.1 Percent BTEX in gasoline 11
Figure 2.2 BTEX components of gasoline 11
Figure 2.3 Schematic depiction of the PRB concept 13
Figure 2.4 Basic types of PRB configuration 14
Figure 2.5 Overview of immobilizations 20
Figure 3.1 Schematic diagram of oxygen releasing reactive barrier system 24
Figure 3.2 Steps of immobilization process 27
Figure 3.3 Flow chart of determining for bead stability. 28
Figure 3.4 Column test for immobilization 30
Figure 3.5 Integration of PRB system and immobilization 32
Feasibility of using bioaugmentation with bacterial strain PM1 for bioremediation of MTBE-contaminated vadose and groundwater


Cheremisinoff, P. N., (1979) "Benzene: basic and hazardous technologies" Environmental Science and Pollution, 10: 331-335.


