Fabrication and Electrochemical Study of Novel Photoanodes for Dye-Sensitized Solar Cells

洪健原、姚品全

E-mail: 9806484@mail.dyu.edu.tw

ABSTRACT

This study divided into two parts, the first part to look at a variety of (LiI, NaI, KI) and Propylene carbonate (PC), 3-Methoxypropionitrile (MPN) and the colloidal gel polymer (polyacrylonitrile, PAN) the composition of the electrolyte system to cyclic voltammetry (cyclic voltammogram, CV) and AC impedance method (AC Impedance), etc. Characteristics of electrochemical; as a dye-sensitized solar cells (Dye-Sensitized Solar Cell, DSSC) electrolyte systems, measurement of its Photoelectric conversion efficiency on a variety of electrolyte systems for the photovoltaic characteristics of the impact of components.

The second part of this study was primarily aimed at the working electrode, in order to spin a good TiO2 coating solution will be allocated to the ITO coated glass as working electrode after sintering, and with different thickness, to observe the heterogeneous structure of the photoelectric conversion efficiency. Electrolytes are ELM-026 (0.26 M LiI + 0.05 M I2 + MPN), EKM-034 (0.34 M KI + 0.01 M I2 + MPN) to observe the performance of its IV.

The results showed that TiO2 film with the working electrode is directly proportional to the number of spin-coating, and when the working electrode thickness reached at 9.1μm (six), with the best of the photoelectric conversion efficiency, when it increased again when the electrode thickness, light no further increase in power conversion efficiency, but slightly short-circuit current Jsc.

Electrochemical analysis shows: MPN solvent system, its Jlim size NaI> LiI> KI, solvent PC system, the size of its Jlim for LiI> NaI> KI. Solvent PC / EC = 3:2, the ionic conductivity of up to 8.22 × 10^{-2} S / m.

Based on the above conclusions, the best known of these study process parameters: TiO2 film thickness 9.1μm, electrolyte is ELM-026, may be the largest photovoltaic conversion efficiency, η = 6.74%. The structure of TCO/P25-TiO2 (9.1μm), PV test results are as follows; VOC = 0.740V, JSC = 14.11 mA/cm2, FF = 0.56, η = 5.93%; the structure of TCO / Sol-Gel TiO2 under layer / P25-TiO2 (9.1μm), PV test results are as follows; VOC = 0.723V, JSC = 15.01 mA/cm2, FF = 0.57, η = 6.14%; the structure of TCO/SnO2 / Sol-Gel TiO2 under layer / P25-TiO2 (9.1μm), PV test results are as follows; VOC = 0.75V, JSC = 15.22 mA/cm2, FF = 0.58, η = 6.74%.

Keywords : Dye-Sensitized Solar Cell、cyclic voltammogram、AC Impedance、Polymer gel electrolyte
2.3.2 染料
2.3.3 電解質
2.3.4 對電極
2.4 DSSC之交流阻抗等效電路
2.5電化學測試元件 (electrochemical cell)
2.6循環伏安 (cyclic voltammogram, CV)
2.7交流阻抗 (AC Impedance)

第三章 實驗製備方法與儀器

3.1實驗設備
3.2藥品耗材
3.3 實驗方法
3.3.1實驗流程
3.3.2 ITO玻璃基板之清洗
3.3.3電解液配置
3.3.4染料配製
3.3.5 P25-TiO2漿料配製
3.3.6 TiO2薄膜光電極製備
3.3.7 新穎光電極製備
3.3.8 Pt對電極製備
3.3.9元件組裝
3.4 儀器量測分析
3.4.1 電化學量測
3.4.2 SEM分析
3.4.3 紫外光-可?光光譜儀 (UV-VIS) 分析
3.4.4 DSSC光電量測

第四章 結果與討論

4.1電解質系統分析
4.1.1電化學測試分析 (一)
4.1.2電化學測試分析 (二)
4.1.3 電化學測試分析 (三)
4.2 工作電極製備分析
4.2.1 SEM分析
4.3 UV-VIS分析
4.3.1 D719染料於D.I Water溶劑分析
4.3.2 D719染料於乙醇溶劑分析
4.4 光電量測部份
4.4.1 TCPP (花青素) 染料系統
4.4.2 D719染料系統
4.4.3 探討 Work electrode 部份

第五章 結論與建議

5.1 結論
5.2 建議

参考文獻

口試委員提問問題與解答


