Development of Dynamic LiFePO4 Battery Charging Systems for Dual Power Driving Vehicles

E-mail: 9806453@mail.dyu.edu.tw

Abstract

In recent years, the increase of traditional internal combustion engine (ICE) vehicles cause the environmental pollution become more serious and the petroleum storage quantity are getting fewer and fewer on Earth. The techniques of energy-conservation become most important research subject in the world. In order to improve these questions, the development of dynamic charging system is necessary. The generator control and battery management techniques are played important roles in electric vehicles or hybrid electrics vehicles (HEV). In this thesis, we research the generator control and battery management techniques of dual power driving vehicle. Base on high efficiency power demand, we chose LiFePO4 battery in the research. The performance of LiFePO4 battery has high discharge power, fast charging and long cycle life. It is the present industrial inside front cover signature page authorization copyright statement

Chapter I INTRODUCTION

1.1 Motivation

1.2 Organization

Chapter II INTRODUCTION TO LiFePO4 BATTERY

2.1 Characteristics of LiFePO4

2.1.1 Electric motor

2.1.2 The chemical properties of LiFePO4

2.2 40138-LiFePO4 battery

2.2.1 The SOC of battery

2.2.2 The chemical performance of LiFePO4

Chapter III FRAMEWORK OF DUAL POWER DRIVING SYSTEM

3.1 The attention events of voltage measuring

3.1.1 Electric motor

3.1.2 The internal combustion engine

3.1.3 Internal combustion engine

3.1.4 Magnetism powder type brake unit

3.1.5 Energy integration mechanism

3.2 The control mode of dual power driving system

3.2.1 BLDC motor mode

3.2.2 ICE only mode

3.2.3 ICE and generator mode

3.2.4 Dual power mode

3.2.5 Regenerative braking mode

3.2.6 Battery charging mode

Chapter IV THE DSP INTERFACE OF MAJOR CONTROLLER

4.1 Generator and LiFePO4 battery charging systems

4.2 TI TMS320LF2407A digital signal processor

4.3 The attention events of voltage measuring

4.3.1 Voltage measuring circuit

4.3.2 A/D protect circuit

4.3.3 A/D converter

4.4 Generator and LiFePO4 battery charging systems

4.4.1 Gate driver circuit of MOSFET module

4.5 Rectification control of the

4.5.1 The circuit of ac-dc converter

4.5.2 Control operation of

4.6 The DSP interface of major controller

4.6.1 Energy generator

LIST OF TABLES

ABBREVIATIONS
References

4.2 Symbol table of battery .. 46
Table 4.3 Symbol table of voltage .. 46
Table 4.1 Hardware features of TI TMS320LF2407A devices......................... 29
Table 3.1 Parameters of three-phase BLDC motor 13
Table 3.2 The control driving pattern ... 73
Fig.6.18 The charge state 2 of driving pattern 74
LIST OF TABLES

Chapter VII CONCLUSIONS... 75
6.2 Experimental results.. 66
6.2.1 The charge state of driving pattern

Chapter VI THE EXPERIMENTAL PROCEDURES AND RESULTS
6.1 Introduction the experimental platform

5.4 The lithium battery model .. 60
5.3 The energy integration mechanism model 56
5.2 The generator model .. 53
5.1 The dual power system concept .. 11
Fig.3.1 Dual power system concept .. 11
Fig.3.2 Photograph of generator and LiFePO4 batteries charging system.... 36
Fig.4.10 Gate driver circuit of power transistor 37
Fig.4.9 The A/D protection circuit of generator for the simulations 33
Fig.4.8 Voltage measuring circuit... 34
Fig.4.7 The A/D protection circuit of series connection of battery module 33
Fig.4.6 The block diagram of voltage measuring................................. 32
Fig.4.5 Series connection of battery module................................ 43
Fig.4.4 The block diagram of MOSFET module................................. 43
Fig.4.3 The LiFePO4 battery dynamic charging system 65
Fig.6.3 The LiFePO4 battery dynamic charging system 65
Fig.6.2 The block diagram of generator for the simulations 56
Fig.5.4 The planetary gear set ... 57
Fig.5.5 The control operation of the dynamic charging system situation IV 52
Fig.5.3 The energy management strategy of dynamic charging system.................. 45
Fig.5.2 The schematic drawing of the charging system situation II 50
Fig.5.1 Schematic drawing of the charging system situation II 50
Fig.4.19 The control operation of the dynamic charging system situation III 51
Fig.4.18 The control operation of the dynamic charging system situation III 51
Fig.4.17 The control operation of the dynamic charging system situation I....... 49
Fig.4.16 The control operation of the dynamic charging system situation I....... 49
Fig.4.15 Energy management strategy of dynamic charging system.................. 45
Fig.4.14 The constant-voltage to charge the battery group B456 71
Fig.6.14 The constant-voltage to charge the battery group B56 71
Fig.6.13 The constant-voltage to charge the battery group B56 71
Fig.6.12 The constant-voltage to charge the battery group B34 70
Fig.6.11 The constant-voltage to charge the battery group B123 70
Fig.6.10 The constant-voltage to charge the battery group B6 69
Fig.6.9 The constant-voltage to charge the battery group B2 67
Fig.6.8 The constant-voltage to charge the battery group B4 68
Fig.6.7 The constant-voltage to charge the battery group B1 67
Fig.6.6 The constant-voltage to charge the battery group B3 68
Fig.6.5 The constant-voltage to charge the battery group B1 69
Fig.6.4 The constant-voltage to charge the battery group B1 69
Fig.6.3 The constant-voltage to charge the battery group B1 69
Fig.6.2 The constant-voltage to charge the battery group B1 69
Fig.6.1 The constant-voltage to charge the battery group B1 69
Chapter V EXPERIMENT RESULTS

4.6.1 The control operation of dynamic charging system
Fig.4.10 The gate driver circuit of power transistor 37
Fig.4.9 The A/D protection circuit of generator for the simulations 33
Fig.4.8 Voltage measuring circuit... 34
Fig.4.7 The A/D protection circuit of series connection of battery module 33
Fig.4.6 The block diagram of voltage measuring................................. 32
Fig.4.5 Series connection of battery module................................ 43
Fig.4.4 The block diagram of MOSFET module................................. 43
Fig.4.3 The LiFePO4 battery dynamic charging system 65
Fig.6.3 The LiFePO4 battery dynamic charging system 65
Fig.6.2 The block diagram of generator for the simulations 56
Fig.5.4 The planetary gear set ... 57
Fig.5.5 The control operation of the dynamic charging system situation IV 52
Fig.5.3 The energy management strategy of dynamic charging system.................. 45
Fig.5.2 The schematic drawing of the charging system situation II 50
Fig.5.1 Schematic drawing of the charging system situation II 50
Fig.4.19 The control operation of the dynamic charging system situation III 51
Fig.4.18 The control operation of the dynamic charging system situation III 51
Fig.4.17 The control operation of the dynamic charging system situation I....... 49
Fig.4.16 The control operation of the dynamic charging system situation I....... 49
Fig.4.15 Energy management strategy of dynamic charging system.................. 45
Fig.4.14 The constant-voltage to charge the battery group B456 71
Fig.6.14 The constant-voltage to charge the battery group B56 71
Fig.6.13 The constant-voltage to charge the battery group B56 71
Fig.6.12 The constant-voltage to charge the battery group B34 70
Fig.6.11 The constant-voltage to charge the battery group B123 70
Fig.6.10 The constant-voltage to charge the battery group B6 69
Fig.6.9 The constant-voltage to charge the battery group B2 67
Fig.6.8 The constant-voltage to charge the battery group B4 68
Fig.6.7 The constant-voltage to charge the battery group B1 67
Fig.6.6 The constant-voltage to charge the battery group B3 68
Fig.6.5 The constant-voltage to charge the battery group B1 69
Fig.6.4 The constant-voltage to charge the battery group B1 69
Fig.6.3 The constant-voltage to charge the battery group B1 69
Fig.6.2 The constant-voltage to charge the battery group B1 69
Fig.6.1 The constant-voltage to charge the battery group B1 69

The Auto Channel, 2009-03-11, "Toyota and Lexus Hybrids Top One Million Sales in the U.S.", Retrieved on 2009-03-28

LiFePO4, Hong Kong, "About LiFePO4," retrieved from http://www.lifepo4.hk, 2009.

Ruei-Hong Dai, "DSP Based 20kW Generator/Lithium Battery Management System and Application of Parallel Hybrid Electric Vehicles," Department of Mechanical and Automation Engineering, College of Engineering, Dayeh University, 2008.

