Numerical and Experimental Study of Piezoelectric Valveless Micropump

Jen-Chung Chang, Chih-Chieh Shen

E-mail: 9806441@mail.dyu.edu.tw

ABSTRACT

The present paper aims to present the design, fabrication, and test of a novel valveless piezoelectrically actuated micropump. The proposed micropump mainly comprises a stainless-steel structured chamber with a piezoelectric (PZT) diaphragm as a driving source to propel liquid stream under actuation. An integrated diffuser/nozzle bulge piece was devised to produce a flow resistance difference across the fluid inlet and the outlet for delivering a net liquid flowrate. During tests, the micropump, operating at the frequency of 250 Hz and the voltage of 160 Vpp, engendered a mean water flowrate up to 0.779 ml/min. In the analysis, the computational fluid dynamics (CFD) software ESI-CFD ACE+® was used to examine the time-varying flow phenomenon inside a full-scale PZT micropump throughout an actuation cycle. The computational approach adopted the transient three-dimensional conservation equations of mass and momentum with the moving boundary specified to represent the movement of the diaphragm. To validate the computer package, the predictions were compared with measured water flowrates generated by the micropump. The simulations revealed that the number of vortices and their rotating direction were determined by the driving amplitude and frequency of the diaphragm. At the frequency ranging from 100 to 250 Hz, the vortex pairs were clearly formed and thereby caused a relatively high pressure drop near the diffuser outlet inside the micropump chamber. In effect, the presence of vortex pairs could develop distinct resistance characteristics in the advancing and retreating phases of the PZT diaphragm to generate a net pumping flowrate from the inlet to the outlet over a full actuation cycle. Numerical experiments were also carried out by varying the opening angle of the diffuser/nozzle module within the range of 8°-12°, the angle setting of 8° can provide the best performance in term of the maximum pumping flowrate achieved.

Keywords: Valveless micropump, Piezoelectric actuator, CFD simulation, MEMS

Table of Contents

Cover Page i
Copyright Page ii
Acknowledgements iii
Chinese Abstract iv
English Abstract v
Preface vi
List of Figures vii
List of Tables ix

Chapter 1 Introduction 1

1.1 Research Motivation 1

1.2 Literature Review 3

1.2.1 Principle of Valveless Micropumps 4

1.2.2 International Research on Micropumps 6

1.2.3 Numerical Studies on Valveless Micropumps 11

1.2.4 Domestic Research on Valveless Micropumps 13

1.3 Research Objective 14

Chapter 2 Methods 16

2.1 Piezoelectric Valveless Micropump Design/Manufacture 16

2.2 Stainless Steel Biphasic Process 18

2.3 Piezoelectric Diaphragm Test and Piezoelectric Valveless Micropump Flow Test System 20

2.4 Theoretical Analysis 23

2.5 Numerical Method 24

Chapter 3 Results and Discussion 28
3.1 Grid Analysis

3.2 Experimental Verification

3.3 Theoretical Model Verification and Key Parameter Weighing Analysis

3.3.1 Numerical Simulation Analysis of Cycle Flow Meter

3.3.2 Opening Angle (opening angle) and Frequency Impact

4. Conclusion

References

徐正宏, "創造式壓電無閥式微幫浦之設計與製作", 私立大葉大學機械工程所碩士論文, 2008.

