ABSTRACT

Usually for the structure which is fabricated by micro-forming process, the mechanical structure and material property are easily affected by the fabrication method used. In this study, we improved the localized electrochemical deposition by employing horizontally aligned anode to fabricate a cantilever copper beam which is in the dimensions of micrometers. A 25-㎛ Pt thread embedded directly inside a borosilicate glass tube was fabricated as the anode. The effects of various control parameters of the deposition process, e.g. potential and electrode gap were also studied. Several quantified measures were employed to correlate the effects of the control parameters and the appearance of the deposited copper microstructure. Based on the optimal control parameters, an array microstructure were fabricated to validate the effort in improving the efficiency of the manufacturing process.

Keywords : Localized electrochemical deposition, Cantilever beam, Horizontal deposition, Array deposition

Table of Contents

第一章 序論
第二章 文獻探討
第三章 研究方法與進行步驟
第四章 結果與討論
第五章 結論

REFERENCES


景崎 張庭綱、楊仁泓、張志雄 “陣?式微陽極導引電鍍技術開發” 。國科會研究計畫期末報告 ANNERND楊仁泓，局部電化學沈積法之一維結構製程及機械性質量測，碩士論文，大葉大學機械與自動化工程學系。黃英修，局部電化學沈積樑及疲勞特性，碩士論文，大葉大學機械與自動化工程學系。林柏如，局部電化學沉積法之製程改良及三維結構製作，碩士論文，大葉大學機械與自動化工程學系。