ABSTRACT
This thesis is focused on designing and realizing the balancing control system of an unmanned bicycle. The control system of the unmanned bicycle is based on the steering control system that is implemented by PID controllers in an industrial personal computer (IPC). A data measurement system for the bicycle is developed, which measures the roll angle of the bicycle body, the steering angle of the front fork, and the bicycle speed. The steering control system driven by a servomotor is designed to simulate the steering control of the rider. These data are provided to the controller implementing the calculation. The bicycle speed and roll angle are controlled independently. The speed control is achieved by one control loop with a PID controller and a PWM, and the roll-angle control by two control loops, where the outer is to generate the reference steering angle by a PID controller, and the inner is to control the steering angle following the reference, also by a PID controller. The data acquisition program and the control program used are written by LabVIEW. The experimental data are used to show the feasibility of the proposed system and controller.

Keywords: Riderless Bicycle、PID、IPC

Table of Contents
第一章 緒論
 1.1 前言
 1.2 文獻回顧
 1.3 研究目的與本文架構
第二章 無人自行車系統元件與控制系統
 2.1 自行車硬體元件說明
 2.2 無人騎乘自行車控制機構與元件說明
第三章 車速控制器與前叉轉向控制器之設計
 3.1 PID控制原理和特點
 3.2 車速控制器之設計
 3.3 車速控制實驗
 3.4 前叉轉向控制器之設計
 3.5 前叉轉向控制實驗
第四章 無人自行車硬體控制實驗
 4.1 自行車姿儀資料擷取實驗
 4.2 無人自行車穩定行駛控制實驗
第五章 結論與未來發展
 5.1 未來發展

REFERENCES

Sharp. R. S., "Optimal linear time-invariant preview steering control for motorcycles", The Dynamics of Vehicles on Roads and on Tracks (S. Bruni and G. Mastinu eds), supplement to VSD 44(1), Taylor and Francis (London), 2006.

陳志達, "無人自行車之駕駛控制系統設計與實現" 國立中興大學電機工程研究所碩士論文 2001

楊智凱, "無人自行車操控動態建立與控制" 大葉大學碩士論文 2004

游富雄, "具有平衡質量塊之無人自行車系統設計與控制" 國立中興大學電機工程研究所碩士論文 2004

劉育江, "無人自行車系統設計與操控實驗" 大葉大學碩士論文 2006

楊可農, "無人騎乘自行車系統設計與穩定行駛之研究" 大葉大學碩士論文 2007

童景賢、陳育堂、藍天雄、許桂樹, "自動控制概論," 全威圖書有限公司

鄭皓文, "無人自行車運動控制之研究" 大葉大學碩士論文 2008