ABSTRACT
Three feather-degrading microorganisms with keratinase producing capacity were isolated from poultry farm feather waste soil in Changhua. Sequence analysis of 16S rDNA sequence for the isolated Wu3, Wu4 and Wu5 strains microbial identification report showed 99% homology with Bacillus cereus strain QD232, Brevibacillus parabrevis M3 and Bacillus thuringiensis strain INBI-2, respectively. It was identified as Bacillus cereus Wu3, Brevibacillus parabrevis Wu4 and Bacillus thuringiensis Wu5, respectively. A extracellular keratinases produced by three strains grown on feather as carbon and nitrogen source after liquid culture at 37℃for 4 days. Three keratinases (Bacillus cereus Wu3, Brevibacillus parabrevis Wu4 and Bacillus thuringiensis Wu5) exhibited activity at pH range of pH 6.5-8.0, pH 7.0-8.5 and pH 7.5-11.0, temperature range of 40-60℃, 50-60℃ and 70-80℃, respectively, with azo-casein as substrate. Optimum pH and temperature of Bacillus cereus Wu3, Brevibacillus parabrevis Wu4 and Bacillus thuringiensis Wu5 keratinases were pH 7, pH 8 and pH 9 and 60℃, 50℃ and 70℃, respectively. The protinase inhibitory effect of metal chelator EDTA and O-phenanthroline characterized three keratinases as metalloproteases. The three bacterial keratinases were completely activated by the presence of Ca2+, K+, Mg2+ and Mn2+. In addition, characterization of three keratinases and the effect of various co-factors on the stability at various temperature and in alkaline pH range was carried out. The results of the present investigation showed that the enzyme was fairly stable to heat treatment in exist of Ca2+ or Mn2+. Bacillus cereus Wu3 and Brevibacillus parabrevis Wu4 keratinases were stable as liquid storage at -20℃, nevertheless the keratinases activity started to drop significantly as powder storage at difference temperature. Further, the three enzymes showed enhance stability in the presence of some organic solvents and reducings agents. The keratinases hydrolyzed a wide of keratin substrates, including chicken skin, goose feather and pig hair, especially Bacillus cereus Wu3 and Bacillus thuringiensis Wu5 keratinases. The Km of Bacillus cereus Wu3, Brevibacillus parabrevis Wu4 and Bacillus thuringiensis Wu5 keratinases with azo-casein as substrate were 2.31, 0.98 and 0.95 g/L, respectively.

Keywords: keratinase, feather waste, metalloproteases
2.2.1 蛋白质之命名

2.2.2 蛋白质分類

2.2.2.1 絲胺酸型蛋白質
2.2.2.2 半胱胺酸蛋白質
2.2.2.3 天門冬胺酸蛋白質
2.2.2.4 金屬蛋白質

2.3 角蛋白質簡介

2.3.1 角蛋白質降解菌來源

2.3.1.1 細菌
2.3.1.2 真菌

2.3.1.3 放射線菌

2.3.2 角蛋白質降解機制

2.3.3 角蛋白質生化特性

2.3.3.1 pH值與溫度
2.3.3.2 分子量
2.3.3.3 基質專一性
2.3.3.4 抑制劑、金屬離子、溶劑、非離子性清潔劑與還原劑

2.3.4 角蛋白質應用

2.3.4.1 動物飼料
2.3.4.2 堆肥
2.3.4.3 生物性包材
2.3.4.4 清潔劑
2.3.4.5 變性蛋白
2.3.4.6 皮革工業
2.3.4.7 其他應用

3. 材料與方法

3.1 實驗材料

3.1.1 菌株來源
3.1.2 菌株培養
3.1.3 羽毛來源
3.1.4 實驗藥品
3.1.5 儀器設備

3.2 實驗方法

3.2.1 蛋白質活性活性測定
3.2.2 蛋白質定量
3.2.3 肌三酮反應
3.2.4 角蛋白質之一般特性性質測定
3.2.4.1 角蛋白質之最適pH值
3.2.4.2 角蛋白質之最適溫度
3.2.4.3 角蛋白質之pH穩定性
3.2.4.4 角蛋白質之熱穩定性
3.2.4.5 角蛋白質貯存性試驗

3.2.5 角蛋白質之生化特性性質測定
3.2.5.1 蛋白質抑制劑對酵素活性之影響
3.2.5.2 金屬離子對角蛋白質活性之影響
3.2.5.3 有機溶剤對角蛋白質活性之影響
3.2.5.4 還原劑對角蛋白質活性之影響
3.2.5.5 角蛋白質分解天然角蛋白質專一性試驗
3.2.5.6 酵素動力學

4. 結果與討論

4.1 羽毛分解菌株篩選與篩定
4.2 角蛋白質之一般特性性質測定
4.2.1 最適活性反應pH值
4.2.2 最適活性反應溫度
4.2.3 pH 穩定性
4.2.4 熱穩定性
4.2.5 貯存性試驗

4.3 角蛋白活性之生化特性性質測定
4.3.1 蛋白抑制劑對角蛋白活性之影響
4.3.2 金屬離子對角蛋白活性之影響
4.3.3 有機溶劑對角蛋白活性之影響
4.3.4 還原劑對角蛋白活性之影響
4.3.5 角蛋白分解天然角蛋白值專一性試驗
4.3.6 酵素反應動力學

5. 結論

參考文獻

Figure 1-1 Schematic of this study procedure
Figure 2-1 Protein structure (a) α-helix and filamentous structure of the keratin (b) β-sheet structure of the keratin
Figure 2-2 The branched structure of feather
Figure 2-3 Serine proteinases inhibition by diisopropylphosphofluoridate
Figure 2-4 Cysteine proteinases inhibition by iodoacetamide
Figure 3-1 The standard calibration curve of sulfanilamide
Figure 3-2 The standard calibration curve of BSA
Figure 3-3 The standard calibration curve of serine
Figure 4-1 Keratinolytic microorganisms. (a) Screening of keratinolytic bacterial isolates on casein-agar plate. (b) Diameter of zone (mm) of keratinolytic bacterial isolates on casein-agar plate. (c) Micromorphology of gram stain isolate keratinolytic bacterial
Figure 4-2 Phylogenetic tree based on 16S rRNA sequence comparisons of strain Wu3 and selected bacteria
Figure 4-3 Phylogenetic tree based on 16S rRNA sequence comparisons of strain Wu4 and selected bacteria
Figure 4-4 Phylogenetic tree based on 16S rRNA sequence comparisons of strain Wu5 and selected bacteria
Figure 4-5 Effect of pH on the activity of partial purified keratinase from Bacillus cereus Wu3
Figure 4-6 Effect of pH on the activity of partial purified keratinase from Brevibacillus parabrevis Wu4
Figure 4-7 Effect of pH on the activity of partial purified keratinase from Bacillus thuringiensis Wu5
Figure 4-8 Effect of temperature on the activity of partial purified keratinase Bacillus cereus Wu3
Figure 4-9 Effect of temperature on the activity of partial purified keratinase Brevibacillus parabrevis Wu4
Figure 4-10 Effect of temperature on the activity of partial purified keratinase Bacillus thuringiensis Wu5
Figure 4-11 Influence of pH on the stability of the keratinase from isolated Bacillus sp. strain
Figure 4-12 Influence of pH on the stability of the keratinase. (a) pH on the stability of the keratinase from Bacillus thurigiensis Wu5. (b) Pseudo-first- orde plots
Figure 4-13 Thermal stability of absence and presence metal ions of the Bacillus cereus Wu3 keratinase
Figure 4-14 Thermal stability of absence and presence metal ions of the Brevibacillus parabrevis Wu4 keratinase
Figure 4-15 Thermal stability of absence and presence metal ions of the Bacillus thuringiensis Wu5 keratinase
Figure 4-16 Storage stability of the different strains enzyme sample
Figure 4-17 The influence of inhibitor on keratinase activity from Bacillus cereus Wu3
Figure 4-18 The influence of inhibitor on keratinase activity from Brevibacillus parabrevis Wu4
Figure 4-19 The influence of inhibitor on keratinase activity from Bacillus thuringiensis Wu5
Figure 4-20 The influence of metal ions on keratinase activity from Bacillus cereus Wu3
Figure 4-21 The influence of metal ions on keratinase activity from Brevibacillus parabrevis Wu4
Figure 4-22 The influence of metal ions on keratinase activity from Bacillus thuringiensis Wu5
Figure 4-23 Effect of organic solvents on activity of Bacillus cereus Wu3 keratinase
Figure 4-24 Effect of organic solvents on activity of Brevibacillus parabrevis Wu4 keratinase
Figure 4-25 Effect of organic solvents on activity of Bacillus thuringiensis Wu5 keratinase
Figure 4-26 Effect of reducing agents on keratinase activity of Bacillus cereus Wu3
Figure 4-27 Effect of reducing agents on keratinase activity of Brevibacillus parabrevis Wu4
Figure 4-28 Effect of reducing agents on keratinase activity of Bacillus thuringiensis Wu5
Figure 4-29 Free amino acid concentrations of various insoluble proteins degraded by Bacillus cereus Wu3 keratinase
Figure 4-30 Lineweaver–Burk plot of various insoluble proteins degraded by Bacillus cereus Wu3 keratinase
Figure 4-31 Free amino acid concentrations of various insoluble proteins degraded by Brevibacillus parabrevis Wu4 keratinase

Figure 4-32 Lineweaver–Burk plot of various insoluble proteins degraded by Brevibacillus parabrevis Wu4 keratinase

Figure 4-33 Free amino acid concentrations of various insoluble proteins degraded by Bacillus thurigiensis Wu5 keratinase

Figure 4-34 Lineweaver–Burk plot of various insoluble proteins degraded by Bacillus thurigiensis Wu5 keratinase

Figure 4-35 Effect of various azocasein concentration of the different strains enzyme sample. (a)~(d)on keratinase activity;(e)~(h) Lineweaver–Burk plot

Table 2-1 Types of Feathers

Table 2-2 Proteinase classification

Table 2-3 Proteinase inhibitors used as protective agents

Table 2-4 Some important microorganism (bacteria) keratinases︰sources, production conditions and keratinase activity

Table 2-5 Some important microorganism (fungi) keratinases︰sources, production conditions and keratinase activity

Table 2-6 Some important microorganism (actinomycetes) keratinases︰sources, production conditions and keratinase activity

Table 2-7 Characterization of keratinase by various strain

Table 3-1 Casein medium

Table 3-2 Feather powder medium

Table 3-3 Raw feather medium

Table 4-1 The RNA sequence comparisons of the isolated keratin-degrading bacteria strain Wu3 with Bacillus cereus strain QD23273

Table 4-2 The RNA sequence comparisons of the isolated keratin-degrading bacteria strain Wu4 with Brevibacillus parabrevis M376

Table 4-3 The RNA sequence comparisons of the isolated keratin-degrading bacteria strain Wu5 with Bacillus thuringiensis strain INBI-279

Table 4-4 Kinetic parameters of pH on the stability of the keratinase from Bacillus thurigiensis Wu5

Table 4-5 Kinetic parameters of thermal stability of absence and presence metal ions by keratinase from Bacillus strain

Table 4-6 (a) Kinetic parameters of organic solvents on keratinase activity of Bacillus cereus Wu3

Table 4-6 (b) Kinetic parameters of organic solvents on keratinase activity of Brevibacillus parabrevis Wu4

Table 4-6 (c) Kinetic parameters of organic solvents on keratinase activity of Bacillus thuringiensis Wu5

Table 4-7 Kinetic parameters of reducings agents on keratinase activity of isolated Bacillus sp strains

Table 4-8 Kinetic parameters of various insoluble proteins degraded by keratinase from isolated Bacillus sp. strains

Table 4-9 Kinetic parameters of purified keratinase

REFERENCES


Parker, L. and Coolbear, T. 1992. Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A.


Patel, B., K.