應用類神經網路於多感測器資料融合

莊登吉、鍾翼能 陳雍宗

摘要
在日新月異的航空及國防技術，由於目標物的性能速度、數目及變異性等皆較以往進步許多，為因應日益復雜的目標追蹤環境，雷達追蹤系統的性能必須同步提昇，才能達到洞燭先機，決戰千里之外的最高戰術目的。在目標的追蹤上，追蹤多個目標時比較複雜，也會常常造成感測器判斷上的錯誤，或者造成追蹤上極大的誤差，用單一個偵測器來做雷達目標的追蹤時，會因掃描區域太大，造成追蹤上的疏失、甚至失去追蹤的目標。同時追蹤多個目標時情況更加複雜，這時若使用「動態偵測器」來偵測目標的相關數據，可使追蹤目標的誤差變小，增加追蹤的成功率。本研究提出一新的追蹤方法，即應用競爭性類神經網路之運算架構於雷達目標追蹤，此運算將可有效且最佳化地決定雷達量測值與軌道間的關聯性，進而準確估算目標物目前的位置及其他資訊，同時結合擴展型多模預估器架構，更可同時解決目標物變速的問題，進而降低追蹤的誤差及錯誤率。本研究計畫主要是探討多偵測器系統的估測方法，並處理和目標追蹤的相關問題，本論文將比較不同的追蹤理論，進而改善追蹤上的問題。

關鍵詞：多目標追蹤系統、競爭性類神經網路、擴展型多模預估器架構、多感測器資料融合

目錄
封面內頁 簽名頁 授權書 中文摘要 英文摘要 謝詞 目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 研究背景及目的 1.3 研究方法 4 論文架構 4 第二章 卡門濾波器之基本架構 6 2.1 簡介 2.2 系統數學模式 2.3 卡門濾波器簡介 2.4 擴展式卡門濾波器 8 第三章 類神經網路理論 14 3.1 前言 3.2 類神經網路 17 第四章 資料相關結合技術 22 4.1 追蹤掃瞄區域預測技術 4.2 資料相關結合技術 24 4.3 PDA理論(Joint Probabilistic Data Association) 28 4.4 JPDA理論 31 第五章 多感測器架構 36 5.1 前言 5.2 多感測器資料結合架構 41 第六章 模擬結果分析 43 6.1 電腦模擬 44 第七章 結論 52 參考文獻 54

參考文獻


