Study of Production of Hyaluronic Acid from Streptococcus zooepidemicus in a Fermentor and Its Rheological Properties

Lai Wei-Guang, Wu Jian-Yi
E-mail: 9708313@mail.dyu.edu.tw

ABSTRACT

Hyaluronic acid (HA) is a very high molecular weight polymer made of repeating units of glucuronic acid and N-acetyl-glucosamine which is bound by alternating β-1,3 and β-1,4 bonds. HA is a high-value biopolymer with a wide variety of medical and cosmetic applications. HA can be extracted from rooster combs or produced in microbial fermentation. In rooster comb, HA is complexed with proteoglycans, making the isolation of high purity, high molecular weight HA costly. Moreover, the use of animal-derived biochemicals for human therapeutics is being met with growing opposition because of the risk of cross-species viral infection and other adventitious agents. Hence, microbial production is gradually replacing extraction as the preferred source of HA. The main aim of the research was to determine the effects of temperatures, aeration and agitation on the production of HA by S. zooepidemicus var. HAWU. In addition, the rheological properties of HA broth and solution were studied. The description of this is divided into four sections. The first section is focused on the effect of different culture variables on the production and molecular weight properties of HA by S. zooepidemicus var. HAWU in the flask and 5-L jar fermentor. In the flask, the optimal temperatures was 37℃, which led to highest HA production (0.78g/L). In a 5-L jar fermentor, we achieved maximum HA productivity (0.6 g/h/L) when the aeration rate and agitation speed increased simultaneously. HA concentration reached 6.7 g/L when agitation rate and aeration rate were controlled at 300 rpm and 1.0 vvm, respectively. Moreover, by reproducing these conditions in a 20-L jar fermentor, we were able to get the same result. The second section is focused on the empirical kinetic model for the batch production of HA from S. zooepidemicus var. HAWU. By using Monod and Michaelis-Meten models, it was found that substrate inhibition for HA production when glucose was greater than 20 g/L. Moreover, a model involved with S. zooepidemicus var. HAWU growth, and HA accumulation combined non-growth-associated and growth-associated contributions, and consumption of glucose and oxygen based on the logistic and Luedeking-Piret equation was developed. The results predicted by the model were good agreement with the experimental observations. The third section is focused on the rheological properties of different amounts of HA broths and solutions using a rotational viscometer at several temperatures (4-70 ℃), pH (1-11) and rotational speed (10- 250 rpm). The modified of power law model were found to be the good agreement with the rheological properties of HA broths and purified HA solutions. Activation energy was determined using the Arrhenius equation and it was found that the activation energy of HA increased with the addition of HA. The last section is focused on the hydrolytic degradation of HA by kinetic measurements. The first-order rate constants of the hydrolytic degradation of HA at different pH and temperature were obtained on the basis of various concentration of HA. Around pH < 5, the decrease of viscosity is shown, and it is attributed to cooperative interchain interactions due to the reduction of polymer net charge and may be the protonation of the acetamido groups; for pH > 5, the decrease of viscosity is mainly attributed to a reduction of the stiffness of the polymeric backbone in alkaline conditions due to the partial breakage of the H-bond network. In addition, from the rate constant, we obtained the activation entropy (△S) and enthalpy (△H) of hydrolytic degradation of HA.

Keywords: S. zooepidemicus var. HAWU; Hyaluronic acid; Fermentation kinetics; Rheological

Table of Contents

1. 前言
2. 文獻回顧
2.1 HA簡介
2.1.1 HA來源
2.1.2 HA生化合成機制
2.2 HA物理特性
2.2.1 HA分子量
2.2.2 HA黏彈性
2.3 HA流變學
2.3.1 牛頓流體
2.3.2 非牛頓流體
2.3.3 影響HA流變學之因子探討
2.3.4 分子量對黏度之影響
2.4 氧氣質傳係數之影響因子
2.4.1 攪拌速率
2.4.2 曝氣速率
2.4.3 黏度
2.5 HA之應用
2.5.1 化妝品之應用
2.5.2 醫學之應用
2.5.3 其他
2.6 HA市場
2.6.1 化妝品方面
2.6.2 醫學方面
3. 材料與方法
3.1 實驗材料
3.1.1 實驗藥品
3.1.2 儀器設備
3.2 菌株培養
3.2.1 菌株來源
3.2.2 菌株活化
3.3.1 發酵槽中菌體培養與收集
3.3.2 固定化微生物顆粒之製備
3.3.3 以固定化菌體顆粒批次生產
3.4 氧氣質傳(KLa)實驗
3.4.1 生物反應器
3.4.2 氧氣質傳係數(KLa)的測量
3.5 分析方法
3.5.1 葡萄糖分析
3.5.2 乳酸分析
3.5.3 HA濃度分析
3.5.4 黏度分析
3.5.6 純化HA之分析
3.5.7 膠體滲透層析
3.5.8 核磁共振
3.5.9 元素分析
3.5.10 細胞質量分析
3.5.11 核磁共振
3.5.12 純化


DeAngelis, P. L., Papaconstantinou, J. and Weigel, P. H. 1993a. Isolation of a


Brito-...


influence of the term kd for endogenous metabolism on the evaluation of Monod kinetics for biotechnological processes. European Journal of

2003. Comparison of the antioxidant properties of wound dressing materials-carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan,


Oxygen transfer to mycelial fermentation broths in an airlift fermenter. Biotechnology and Bioengineering 30: 746-753. Morimoto, K.,


O., Mortilla, E. and Maras, B. 1999. Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid (Hylaform®


Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters 29(1): 17-25. Koshiishi,


Reed, C. E., Li, X. and Reed