Along with the global economic integration, the manufacturing industry is challenged heavily to make effort for: "How to shorten the life cycle time and to lower costs"? So responding to improve the developing speed and the flexibility of manufacture technique, rapid manufacturing becomes the best way adopted by industry. Rapid manufacturing is the general name for Reverse Engineering (RE), Rapid Prototyping (RP) and Rapid Tooling (RT). This research aimed at the optimal parameters of silicon rubber moulding process by using Taguchi method. Here the L9 orthogonal chart is adopted for three factors (mixture composition of silica gel, time to harden, backing temperature) and three level, and nominal-the-best. Finally, the research is illustrated by two examples.

Keywords: Rapid Tooling; Silicone Mold; Taguchi Method

Table of Contents

1. Introduction
 1.1 Research Motivation and Objectives
 1.2 Research Framework

2. Literature Review
 2.1 Rapid Tooling
 2.2 Mold Design

3. Rapid Tooling Technology
 3.1 Types and Applications
 3.2 Prototype Casting
 3.2.1 WAX Printed Casting
 3.2.2 Sand Casting
 3.3 Indirect Rapid Mould
 3.3.1 Soft Mould
 3.3.2 Hard Mould
 3.4 Direct Rapid Mould
 3.4.1 Liquid Process
 3.4.2 Sheet Exposure Process
 3.4.3 Powder Process
 3.4.4 Paper Lamination Process
 3.4.5 Plastic Extrusion Process
 3.4.6 3D Printing Process

4. Three-dimensional Measurement System
 4.1 Three-dimensional Measurement System
 4.2 Three-dimensional Measurement Head
 4.2.1 Contact Measurement Head
 4.2.2 Non-contact Measurement Head
 4.3 Three-dimensional Measurement System Operations
 4.3.1 Manual Operation
 4.3.2 Motor-Driven Operation
 4.3.3 CNC Operation
 4.4 Linear Guidance System
 4.4.1 Air Bearing Guide
 4.4.2 Roller Bearing Guide
 4.4.3 Ball and Roller Guide
 4.5 Coordinate System
 4.5.1 Machine Coordinate System
 4.5.2 Work Coordinate System
 4.6 Measurement Modes

5. Taguchi Experiment Plan Method
 5.1 Introduction
 5.2 Experimental Steps
 5.2.1 Understanding the Experiment Process and Plan
 5.2.2 Selecting Factors and Levels
 5.2.3 Choosing Orthogonal Arrays
 5.2.4 Experiment Configuration and Execution
 5.2.5 Data Analysis
 5.2.6 Optimization Test
 5.2.7 Implementation of Confirmation Experiment
 5.2.8 Conclusion and Suggestions

6. Silicone Mould Production and Product Accuracy Experiment
 6.1 Experimental Equipment
 6.1.1 Vacuum Blending and Deaeration Machine
 6.1.2 Hot Air Circulation Dryer
 6.1.3 Three-dimensional Measurement System
 6.2 Silicone Mould Production
 6.2.1 Determining the Moulding Plane
 6.2.2 Choosing Mould Boxes
 6.2.3 Silicone Mould Casting
 6.2.4 Resin Product Casting
了解實驗製程與規劃
選擇因子和水平
選擇直交表
數據分析
最佳化測試
執行確認實驗
矽膠模具實例運用
第七章 結論

REFERENCES
[1] 丁志華、游璨瑋（民90），田口實驗計畫法簡介，毫微米通訊，八卷四期，頁22-37。
[2] 田口玄一著，陳耀茂譯（民92），田口統計解析法，五南圖書出版社。
[3] 林淑君、蔡裕祥（民95），精密量測及檢驗，全華科技圖書股份有限公司。
[4] 高世安、李定穎、姚文隆（民91），快速醫療輔具之製作，第五屆工程科技與中西醫學應用研討會。
[5] 黃仲儀（民94），粉末型快速成型機之成形性質探討，大業大學機械工程研究所碩士論文。
[6] 郭啟全、鄭正元（民93），快速成型原理與應用，高立圖書有限公司。
[7] 鄭正元（民93），金屬樹脂快速射出成型模具製造技術研發，行政院國家科學委員會專題研究計畫成果報告（NSC91-2622-E-011-020-CC3）。
[8] RP簡介 http://www.me.cyu.edu.tw/laboratory/