The design and simulation of smart cooling system for motorcycle

郑守安、张舜长

E-mail: 9707930@mail.dyu.edu.tw

ABSTRACT

The goal of this thesis is to design a thermal controller of smart cooling system for 250c.c. scooter engine. In order to reduce fuel consumption and emission through a better control of coolant flow rates and temperature. Using a sever-motor water pump and an electrically driven thermostat which controls the flow distribution between the radiator and its bypass. The MATLAB Simulink Real-Time windows Target controller was applied to design the control algorithms for the smart water pump and electrically thermostat. Using the engine thermal dynamic models of ADVISOR to verify the feasibility of proposed controller. It will be presented to estimate the temperature of cylinder, engine block, engine accessories and hood for smart cooling system. Finally, the experiment results showed that the smart cooling system allows to improve fuel consumption by 5% and 1.15% during low speed and heavy load.

Keywords : Smart Cooling System ; Engine Thermal Control ; MATLAB Simulink ; ADVISOR
[31] 李進修和王漢英, "汽機車引擎設計與分析技術", 國立清華大學出版社, 2005。

[22] 林宗達, "智慧型引擎冷卻系統技術發展介紹", 機械工業月刊, 第 284 期, 第 54-62 頁, 2006。


