ABSTRACT

Face detection is the foundations of some applications including machine vision, face tracking and face recognition. It has been broadly applied in the areas such as human machine interface, video surveillance, public security, access surveillance, medical diagnosis, and intelligent life. Hence, face detection is very crucial to our future life, indicating that it should highly achieve both the accuracy and performance. In this study, we propose a novel algorithm with two stages to detect the potential face regions in the images. A cascade Adaboost with Haar-like features is used as the first stage to exhaustively search for the potential face regions in the image, followed by a second stage, SVM (support vector machine) with LBP (local binary pattern) features being applied to filter out the non-face regions mistreated as face regions by Adaboost in the first stage. CMU face database with four file directories, labeled as newtest, test, test-low, and rotated, is popular to be used in the performance testing for a new face detector. The detection rates of the proposed detector for newtest, test, test-low, and rotated are 86.1%, 79.0%, 45.8%, and 38.9%, respectively, when Adaboost with Haar-like features is utilized. Furthermore, with SVM and LBP features used as the second stage, the detection rates slightly decrease to 91.0%, 69.2%, 81.7%, and 79.1%, respectively, for the testing directories mentioned above. The experimental results also show that even though the quality of the testing images is not good, Adaboost with Haar-like features can still retain the most information of face features. But when the types of Haar-like features used are not enough, the false alarm rate (i.e., classifying non-face regions as face regions) is still high for this method. However, when SVM with LBP features used as the second stage, it can effectively eliminate the potential face regions mistreated in the first stage. The LBP features, however, cannot hold the most information of face features if the textures of face images are not complete. As the experimental results revealed, most of the face regions undetected are due to tilted images or those with large rotation angles (in-plane or out-of-plane). Additionally, the face regions misclassified are primarily caused by those images with distinct horizontal or vertical features, or with partially occluded faces. To reduce the false alarm rate, the possible ways in our future work can increase some rotated Haar-like features, or increase more versatile examples with glass-wearing, hat-wearing or partially occluded faces in the training stage.
第四章 支持向量機（SVM）理論

4.1 前言

4.2 線性可分離（Linearly Separable）

4.3 線性不可分離（Linearly Non-Separable）

4.4 非線性可分離（Nonlinearly Separable）

4.5 支持向量機與核函數之選擇與參數設定

4.5.1 C-SVC之參數設定

4.5.2 最佳Gamma值之搜尋

4.5.3 不同類型的SVM &不同核函數

第五章 紋理介紹

5.1 前言

5.2 Haar-like Feature

5.2.1 積分面積演算法

5.3 Local Binary Pattern

5.3.1 Local Binary Pattern 之演算法

5.3.2 改良式Local Binary Pattern

5.4 Laws紋理

5.5 Wavelet Transform

5.6 空間灰階伴隨矩陣紋理分析

第六章 數位影像處理相關技術介紹

6.1 前言

6.2 前景與背景分離技術

6.2.1 背景相減法（Background Subtraction）

6.2.2 影像時間差異法（Temporal Difference）

6.2.3 膚色分析

6.3 形態學影像處理

6.3.1 侵蝕（Erosion）

6.3.2 膨脹（Dilation）

6.4 縮放圖技術

6.4.1 近鄰內插法（Nearest Interpolation, NN）

6.4.2 雙線性內插法（Bilinear Interpolation）

6.4.3 方內迴旋法（Cubic Interpolation）

6.4.4 面積內插法（Area Interpolation）

第七章 人臉偵測流程與實驗結果

7.1 前言

7.2 發展環境

7.3 人臉資料庫介紹

7.3.1 MIT-CBCL資料庫

7.3.2 Caltech Image Database

7.3.3 MIT-CMU資料庫

7.4 系統流程設計說明

7.5 實驗結果

7.6 實驗結果討論

第八章 結論與未來研究動向

8.1 結論

8.2 未來研究動向

參考文獻


[35] E. H. Han, G. Karypis, and V. Kumar, "Text categorization using weight adjusted k-nearest neighbor classification", 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2001), Hong Kong, China, pp. 53-65, 2001.


