The Study of Silicon Germanium Material on Photodetectors

張文澤、黃俊達

ABSTRACT

The requirements of Silicon-based photonic devices in the next generation of chip technologies have caused extensive studied on SiGe devices due to the strained SiGe material exhibits several advantages, such as high electron and hole mobility than those in bulk Si, modulating detection wavelength from 0.8 to 1.8 μm for near-infrared optical detection, and easily integrated with the existing Silicon technology. In the past years, various types of SiGe-based optoelectronic devices have been proposed. In our researches, we demonstrated a wavelength filter of photodetector which was simply carried out by just inserting a 60 nm thick a-Si:H capped layer onto Si0.8Ge0.2 thin film. Then, we employed Ni, Au, and Cr metals on an asymmetry metal-semiconductor-metal (MSM) structure in SiGe/Si heterojunction photodetector, it was successfully achieved to suppress the dark current of conventional symmetry MSM structure, but the photocurrent are about the same for all symmetry and asymmetry structures. Furthermore, we investigated transparent ohmic contacts of indium tin oxide (ITO) to p-type Si0.8Ge0.2 layer with and without a Si-capping layer. It is shown that the ITO/p-type Si0.8Ge0.2 contact structure exhibits a specific contact resistance of 2.26x10^-5 Ω-cm² as compared to that of 2.78x10^-2 Ω-cm² for the ITO/Si/p-type Si0.8Ge0.2 contact structure after annealed at 600 ℃. Applying the contact character of ITO and SiGe, a voltage-control dual-band near-infrared photodetectors was achieved by using a MSM (ITO/p-Si/p-Si0.8Ge0.2/ITO) structure.

Keywords : silicon germanium ; heterostructure ; photodetector ; near infrared

Table of Contents

Cover Page Signature Page Letter of Authority (Chinese).....................................iii Abstract (English)...iv Abstract (Chinese)..v Acknowledgments (Chinese)..vi Table of Contents...vii List of Figures..ix List of Tables...xi Chapter 1 Introduction..1 Chapter 2 Thin Films Preparations
2.1 Cleaning process..4 2.2 Deposition of Si0.8Ge0.2 thin films.............................4 2.3 Deposition of a-Si:H capping layer on Si0.8Ge0.2................5 2.4 Deposition of Si capping layer on Si0.8Ge0.2....................5 2.5 Metal electrodes..5 2.6 Deposition of ITO transparent electrodes........................6 Chapter 3 Low Cost Wavelength Filter of SiGe Photodetector with a-Si:H Capped Layer
3.1 Research Motivation..10 3.2 Experiments..10 3.3 Results and Discussion...11 3.4 Summary..12 Chapter 4 Suppressing the Dark Current of Metal-Semiconductor-Metal SiGe/Si Heterojunction Photodetector by Using Asymmetric Structure
4.1 Research Motivation..18 4.2 Theoretical Simulation...19 4.3 Experiments..21 4.4 Results and Discussion...21 4.5 Summary..22 Chapter 5 Nonalloyed Transparent Ohmic Contact of Indium Tin Oxide to P-Type Si0.8Ge0.2
5.1 Research Motivation..33 5.2 Experiments..33 5.3 Results and Discussion...34 5.4 Summary..36 Chapter 6 Voltage-Control Near-Infrared Dual-Band Photodetector with Metal-Semiconductor-Metal Structures
6.1 Research Motivation..42 6.2 Experiments..43 6.3 Results and Discussion...43 6.4 Summary..45 Chapter 7 Conclusions and Prospects
7.1 Conclusions..49 7.2 Suggestions of Further Study...................................50 References...52 Bibliography...56

REFERENCES
