Fabrication of TiO$_2$ Extended-Gate H$^+$-ion Sensitive Electrode at Low Temperature

林彦名、廖豐標、姚品全

E-mail: 9609692@mail.dyu.edu.tw

ABSTRACT

In this study, low-temperature fabricated TiO$_2$ thin films were conducted by hydrothermal treatment with a home-made autoclave. There are two types of TiO$_2$ stock solution. One is synthesized by sol-gel route with titanium isopropoxide (TTIP) as precursor. The other is prepared by dispersing commercial TiO$_2$ nanoparticles in solvent. Rigid one (ITO-glass) and conductive flexible substrate (ITO-PET) were used as substrate. The precursors were spin-coated on substrate. The as-deposited films were characterized by Raman, n&k, surface profiler, SEM, AFM and XRD, etc. SEM photographs show obviously that cluster diminish from 70nm to 40nm as the hydrothermal treatment time is increased from 0 to 24hrs which revealed that the clusters will be dispersed effectively under hydrothermal conditions. The facts were coincided with those derived by AFM since the surface roughness factor (Rms) is dropped from 17.7nm to 11.36nm. Besides, hydrothermal treatment can be conducted with aqueous solutions among which the 0.5M HCl solution has the lowest Rms (4.9nm). The XRD patterns consist of titanium hydroxides with abundant of oxygen-deficient Ti$_4$O$_7$ crystalline. The Raman shift displaces toward high wavenumber as the hydrothermal process time and temperature were increased. The thickness of the films almost keep constant throughout the whole process as measured by surface profiler. Optical transmittance obtained by n&k optical system reveals that the films prepared in this study has visible light transmittance as high as 80% or above, no matter what the substrate and hydrothermal process is. The experiments show that the flexible substrate (ITO/PET) had low endurance for hydrothermal process for longer times owing to plastic degradation and will cause some difficulties in preparation. The deposited films were connected to wires and encapsulated to make the EGFET as H$^+$ sensor in aqueous solution. The structures were divided into four categories: (A). TiO$_2$(Sol-Gel)/ITO/Glass, (B). TiO$_2$(P25)/ITO/Glass, (C). TiO$_2$(Sol-Gel)/ITO/PET, (D). TiO$_2$(P25)/ITO/PET. After hydrothermal treatment with deionized water, the sensitivity of the four structures follows the sequence (A)>(B)>(C)>(D), while the samples treated by 0.5M HCl instead of DI-water under identical conditions, the sensitivity sequence becomes: (C)>(A)>(B)>(D). In contrast, as 0.5M NaOH in place of HCl, the sensitivity lists as (C)>(A)>(B)>(D). The hydrothermal process increase the sensitivity structure (B) and (D). As a conclusion, the structure (A) has highest sensitivity and stability, which remains the stability above 60 μA/pH. while the samples treated by 0.5M HCl or 0.5M NaOH instead of DI-water under identical conditions, the sensitivity of structure (B) and (D) improved of 50μA/pH.

Keywords: Titanium Dioxide (TiO$_2$), sol-gel process, hydrothermal process; n&k system; after
第四章 結果與討論

4.1 製程參數對感測度分析

4.2 製程參數對二氧化鈦薄膜材料之分析

4.2.1 SEM之表面形態分析

4.2.2 XRD之結晶特性分析

4.2.3 AFM之平均粗糙度分析

4.2.4 Raman 之光譜分析

4.2.5 膜厚測量儀之探討

4.2.6 光學監控系統n&k分析儀之探討

第五章 結論

參考文獻

[10] 胡賀捷, 在氧化鋁板上製備二氧化鈦薄膜的研究, 臺灣大學化工所, 碩士論文, 2000。

[12] 陳永芳, 以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦, 交通大學應用化學所, 博士論文, 2002。

[14] Il-Doo Kim,a_Yong Woo Choi, and HarryL. Tuller, 2005 "Low-voltage ZnO thin-film transistors with high-K Bi1.5 Zn1.0 Nb1.5 O7 gate insulator for transparent and flexible electronics",Applied Physics Letters 87, 043509 _2005

[15] 張怡南, 2000, 生物感測器, 生物技術的發展與應用, 九州出版社, 第三版, PP. 303~320。

楊恩旭,1998,二氧化錫薄膜應用於離子感測場效電晶體之研究,中原大學,碩士論文。

Hung Kwei Liao, Li Lun Chi, Jung Chuan Chou.; Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1999, “Study on pHPZC and Surface Potential of Tin Oxide Gate ISFET”, Materials Chemistry and Physics, Vol. 59, PP.6-11, SCI。

蔡軒名,2001,以非晶形碳氫與非晶形矽氫當作氫離子感測場效電晶體閘極材料及其讀出電路之研究,國立雲林科技大學,碩士論文。

