Developments of Manufacturing Processes by Twice Core-Foaming for Composite Sandwich Structures

Siu Chun Chung, Shu Hsin Wang
E-mail: 9609666@mail.dyu.edu.tw

ABSTRACT

The research is going to develop new manufacturing processes for the composite sandwich structures and tubes. However, this method is going to adopt the foam as the core stuff. In the processes, the foam will be applied to product pressure to expand the long-fiber composite structure tubes. The methods will increase the product stability and reduce the extra works for processes of mending, which will decrease the cost and promote the competition abilities of the products. To develop lightweight sandwich composite structure in the past, the thermosetting plastic were the major parts of core and the exterior-mold pressure was the integrant pressure during the curing processes which cause lot of more part lines and more patch-up. However, the Blown film method was used to manufacture composite tube structures and frequently cause the uneven pressure make the phenomenon of the uneven strut-wall thickness. Therefore, these methods will decrease the quality of product and stability. This research is going to use the thermoplastic and second foaming produced the interior pressure are substituted for the original methods, the Blown film and the thermosetting core. The present method will decrease the number of parts lines and offer enough pressure by foaming for the air bubble discharged from the laminated composite. The aspects of the research will discuss the relationships between foaming ratio, pressure and temperature.

Keywords: composite; foaming; sandwich structures

Table of Contents

Chapter 1 Introduction
1.1 Research Background
1.2 Research Goals

Chapter 2 Literature Review
2.1 Foaming Technology Development
2.1.1 Foaming Process
2.1.2 Foaming Materials
2.1.3 Foaming Agents
2.2 Composite Tubular Structures Literature
2.3 Foaming Rate and Time Relationship

Chapter 3 Research Method
3.1 Foaming Core Preparation
3.1.1 Foaming Agent Selection
3.1.2 Foaming Materials Selection
3.2 Process Feasibility Experiment
3.3 Foaming Agent Experiment
3.3.1 Foaming Agent Decomposition and Temperature Relationship Experiment
3.3.2 Gas Generation and Temperature Relationship Experiment
3.3.3 Gas Generation Calculation
3.3.4 Foaming Agent Quantity Relationship Experiment
3.4 Variance Analysis
3.5 Foaming Pressure Experiment

Chapter 4 Results and Discussion
4.1 Process Feasibility Experiment
4.2 Foaming Agent Decomposition and Temperature Relationship
4.3 Gas Generation and Temperature Relationship
4.4 Foaming Agent Quantity Relationship
4.5 Foam Expansion Pressure Experiment
4.6 Sandwich Structure Fabrication

Chapter 5 Conclusion and Future Development Directions
5.1 Conclusion
5.2 Future Development Directions

References


[26] 陳桂蘭、李榮勳、劉波, 複合發泡劑對發泡倍率和泡孔結構的影響, 高分子工業期刊 102 期。

[27] 洪佳銘, 發泡用 PP 的特徵及其應用, 高分子工業期刊 103 期。

[28] 劉士榮, 塑膠加工學, 高分子工業期刊 102 期。

[29] 劉士榮, 塑膠押出成型, 高分子工業期刊 103 期。

[30] 錢漢英、王秀嫻、李曜賓、李潔濤, 塑膠加工實用技術問答, 高分子工業期刊 102 期。

[31] 許明發、柯澤豪、劉顯光、郭文雄, 複合材料入門, 高分子工業期刊 103 期。

[32] 許明發、郭文雄, 熱塑性複合材料, 高分子工業期刊 104 期。

[33] 戴宏哲、張世昌、方裕榮, "LDPE 連續發泡體發泡機構與結構研究", 行政院國家科學委員會專題研究計畫成果報告, 2003。

[34] 陳申岳, ANSYS 有限元數軟體-實務產品可靠度分析, 全華科技, 2004。

[35] 盛強國際有限公司, "注射成型用新型發泡材料 RB 發泡材料介紹", 東莞, 2005。

[36] 財團法人塑膠工業技術發展中心, "發泡之原理及其押出加工技術之應用", 2006。