陳鴻裕、薛英家、姚品全

ABSTRACT

Probe into an each generation new technology applied to the display with electrowetting, find in the experiment that drips a drop of liquid while voltage that ITO glass is fooled among ITO and liquid interface to change, the surface tension will be with change and changing contact angle too, and this kind of operation is reversible, this is the so-called ' (Electrowetting, EW). If the ITO glass surface exerting the voltage spreads the exceeding and dredging the insulating membrane of super hydrophobic, can improve operating by reliability effectively, prevent from too phenomenon electrode not caused not electrolytic destroy with solving liquid from. This phenomenon calls ' the (Electrowetting-On-Dielectric, EWOD). Studying will have oil blue that will be dripped in the container of a little shape afterwards, the top has paving one more layer of water, once exert the voltage between ITO electrode and water, it is exposed to tension and will change the oil blue will be crowded on one side, this movement is that Electroweeting Display the principle. So the Electroweeting Display the principle already for the liquid, Wetting phenomenon produced because of static electric field function, this can control Wetting performance by changing surface chemical or surface micro-structure while water insulating. This text will be by way of changing surface micro-structure (roughness surface), research and discussion. Expect via roughness surface to take characteristic analysis and discussion believe that there is suitable aid in the (electroweeting display) design respect.

Keywords : Wettability ; Super Hydrophob ; Roughness surface ; electrowetting display

目錄

第一章 緒論
第二章 文獻探討
第三章 理論基礎
第四章 實驗方法與量測儀器
第五章 實驗結果與分析
第六章 結論與未來展望

参考文獻
REFERENCES


[17] 鄭總輝,陳振鑾,陳致源,鄭欽峰“疏水自潔塗層結構概論”,工業 材料雜誌,2月218期,pp.80-88,2005年

[18] 黃宏欽, “超疏水塗層製備技術及其性質之研究”, 國立成功大學碩士論文, 2005

[19] 陳佳惠“斥水性奈微結構表面之液滴驅動與操控”, 國立清華大學碩士論文, 2004

[20] 謝孟諺“低消耗功率及高速之微流體液滴系統與分析”, 國立清華大學碩士論文, 2005