The objective of this study was to investigate the survival of dietary probiotics in gut of broiler. Forty-two day-old commercial broilers were used in this experiment randomly divided into three group with 14 broilers for each group. The broilers were fed for eight weeks. The broilers for Groups A and B were fed the basal diet supplemented with 3% and 5% fermented milk containing Lactobacillus acidophilus, Lact. bulgaricus, Streptococcus thermophilus and Bifidobacterium longum, respectively, and the broilers for group C were fed the basal diet only as the control. The broilers for Groups A and B were fed the supplemented diets for four weeks and then changed to the basal diet. Feed and water were provided ad libitum. The results showed that there were no significant differences in growth performance among the broilers for three groups (dietary probiotics fed broilers and the control). The two media, LAMVAB and BIM-25, were used for the selecting culture of Lactobacillus and Bifidobacterium in the samples from the contents of the broilers ileum, caecum and colon and the broiler excreta. Group A and B showed that the numbers of Lactobacillus and Bifidobacterium presented in the contents of the guts were higher than control group (P<0.05). In caecum, the Lactobacillus and Bifidobacterium counts were significantly higher than ileum and colon (P<0.05). Lactobacillus counts of the broilers excreta on 5th week were significantly higher than on the other weeks in all the groups (P<0.05). Then, Bifidobacteria counts of the broilers excreta on 4th week was significantly higher on the other weeks in all the groups (P<0.05). In addition, the probiotics colonies were further cultured to extract genomic DNA. The PCR methods was applied for detection the specific probiotics in the broiler intestine or excreta. This result showed that the intestine content or excreta of broilers fed with fermented milk was detected. In addition, the SEM also showed probiotics in the broiler caecum. In conclusion, it was suggested that dietary probiotics might reside in the intestinal tract.

Keywords: probiotics, broilers, intestine

Table of Contents

中文摘要..................................... iv 英文摘要..................................... v 誌謝... vi 目錄... vii 圖目錄....................................... xi 表目錄....................................... xii 1.緒言....................................... 1 2.文獻回顧................................... 2 2.1腸道微生物與家禽之關係.................... 2 2.2家禽的腸內菌相種類及分佈............. 3 2.3益生菌(probiotics)....................... 5 2.3.1益生菌的定義............................ 5 2.3.2益生菌菌株的特性........................ 7 2.4乳酸菌(lactic acid bacteria)的定義及分類 9 2.5乳酸菌作為益生菌之特性.................... 10 2.6乳酸桿菌對家禽之影響...................... 10 2.6.1對雞隻生長性狀及產蛋性能之影響.......... 10 2.6.2氨排出之影響............................ 13 2.7分子鑑定法................................ 13 3.材料與方法................................. 17 3.1試藥...................................... 17 3.2儀器...................................... 18 3.3含益生菌-發酵乳製備....................... 19 3.3.1使用材料................................ 19 3.3.2菌種來源................................ 19 3.4試驗動物.................................. 20 3.5試樣之採集................................ 20 3.6腸道乳酸菌類細菌菌相之分析................ 20 3.6.1乳酸桿菌(Lactobacillus)菌數測定....... 21 3.6.2雙歧桿菌(Bifidobacteria)菌數測定...... 21 3.6.3使用之培養基成分........................ 21 3.7乳酸菌類細菌菌種分離與純化.............. 22 3.8菌種鑑定.................................. 22 3.8.1取得培養菌株之Genomic DNA............... 22 3.8.2分子標定法.............................. 23 3.8.2.1乳酸桿菌部分.......................... 23 3.8.2.1.1菌屬專一性的PCR..................... 23 3.8.2.1.2群組專一性多步驟之PCR............... 25 3.8.2.2雙歧桿菌部分.......................... 28 3.8.2.2.1菌屬專一性的PCR..................... 28 3.9掃描式電子顯微鏡組織觀察.................. 30 3.10統計分析................................. 31 4.結果與討論................................. 32 4.1益生菌對雞隻生長性能之影響................ 32 4.2菌數測定結果.............................. 35 4.3菌種鑑定.................................. 43 4.3.1菌屬專一性之PCR......................... 43 4.3.2群組專一性多步驟之PCR................... 46 4.4掃描式電子顯微鏡組織之觀察............. 52 5.結論....................................... 54 參考文獻..................................... 55 附錄... 62

