不同pH培養Bacillus megaterium 生合成PHB之研究

許琮詠、余世宗、涂瑞澤

摘 要

羟基烷酯（Polyhydroxyalkanoates, PHAs）为一股性質與聚丙烯相似之生物可分解性塑膠材料，可藉由微生物於某種營養素缺乏的環境下累積而成，由於此類之聚合物可應用的範圍相當廣，因此被廣泛研究。本實驗以Bacillus megaterium YU-1為實驗菌株，於限制氮源的生長環境及不同pH（5.0、5.5、6.0及7.0）下進行批次發酵培養，探討pH對菌體量、PHB產量、營養源消耗及代謝酸的產量之影響。實驗結果顯示，於限氮及pH 5.5的條件下培養，生質量與PHB產量分別為5.03與1.23 g/L，PHB佔菌體生質量約24%，為最高，而pH 5.5之代謝酸主要以檸檬酸為主，於培養24 h時達最高，約397.8 mg/L。限磷研究方面，於各種pH（5.0、5.5、6.0及7.0）下進行批次發酵培養，探討pH對菌體量、PHB產量、營養源消耗及代謝酸的產量之影響。實驗結果顯示，於限磷及pH 6.0的條件下培養，菌體之生質量及PHB產量分別為7.18與5.69 g/L，PHB佔菌體生質量約79%，為最高，而pH 6.0之代謝酸主要以乙酸為主，於培養28 h時達最高，約3.1 g/L。實驗結果顯示，限磷及pH 6.0的培養比限氮培養有較佳之生質量及PHB產量，在限磷條件下，菌體分泌之有機酸以乙酸為主，而限氮條件下則以檸檬酸為主。

關鍵詞：聚羟基烷酯類；限氮；限磷

目錄

1. 緒論
2. 文獻回顧
3. 材料與方法
4. 結果與討論
5. 結論與展望

參考文獻
G. N. M. and Waard, D. P. 1993. Oleic acid as a substrate for poly-3-hydroxybutyrate formation in Alcaligenes eutrophus and Pseudomonas
poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate) terpoly-
19..Lemos, P. C., Serafim, L. S. and Reis, M. A. M. 2005. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed
2004. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polymer Degradation
Production of poly(3-hydroxybutyric acid) by fed batch culture of Alcaligenes eutrophus with glucose concentration control, Biotechnol. Bioeng.,
biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant. Bioresource Technology, 95 :
Steinbuchel, A. 2001. Optimization of cell growth and poly(hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain.
28.Preusting, H., Hazenberg, W. and Witholt, B. 1993. Continuous production of poly(3-hydroxyalkanoates) by P. oleovorans in a high cell density,
synthesis in fed-batch culture of Ralstonia eutropha with phosphorus limitation under different glucose concentrations. Biotechnology Letter, 25 :
Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate reaction, Biotechnol. Prog., 20 :
140-144. 31.Skoog, D. A., West, D. M. and Holler, F. J. 1993. The determination of amine nitrogen by the Kjeldahl method, Analytical Chemistry,
renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase, Biochemical Engineering Journal, 16 :
secretion of a stress-related metalloprotease in high cell density culture of Bacillus megaterium. Journal of Biotechnology, 126 : 313-324. 34.Volova,
T., Shishatskaya, E., Sevastianov, V., Efremov, S. and Mogilnaya, O. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers,
mixed organic acids as carbon sources by Ralstonia eutropha, Biochemistry, 39 : 387-391.