整合粗略集合與緣集合理論於資料探勘在生技產品生命週期與銷售之研究

黃肇偉、黃開義 陳郁文

摘 要
本篇研究利用緣集合理論加上資料探勘的方法挖掘生技產品生命週期各階段中影響產品銷售的重要屬性。緣集合理論為一種關於時間序列的新集合理論。在本研究中，為了得到與生技產品的相關屬性，首先訪問了十家生技廠商，並從訪談當中，了解有關生技產品銷售的屬性因子，作為我們資料探勘的輸入項。因為生技產品的種類繁多，為了達到單一產品研究的目的，本研究選擇了台灣在生技產業中較成熟的醫藥產品來做為我們的研究的個案。 台灣生技醫藥產品的原料大多是從歐美等國家進口，實際研發屬於少數，因此我們在本研究排除研發期以及導入期，只考慮成長期、成熟期、衰退期三階段来做為本研究的依據。從北部某大藥廠取得產品銷售資料後，利用緣集合的隶属度概念，依照前後兩年銷售數據的誤差完成生命週期三階段資料之劃分。最後利用粗略集合軟體Rosetta探勘出各階段銷售資料屬性的路徑，並完成判中率檢核，取得核心k值，擷取出影響生命周期三個階段當中的重要屬性，並加以討論。 由研究結果發現，本研究所提出的緣集合理論較單一使用粗略集合理論有較好的篩選效果；另外在生技醫藥產品的部分，本研究能夠有效得擷取出了在生命週期各階段重要的銷售因子，以利將來案例廠商作為銷售產品的參考依據。

關鍵詞 : 緊集合理論 ; 資料探勘 ; 生技醫藥產品 ; 產品生命週期 ; 隸屬度 ; 粗略集合 ; 核心k值

目錄

1. INTRODUCTION
1.1 MOTIVATION
1.2 PURPOSE OF THE STUDY
1.3 THE RESEARCH PROCEDURES
1.4 THESIS ORGANIZATION
2. LITERATURE REVIEW
2.1 DATA MINING
2.2 SET REVIEW
2.3 BIOTECHNOLOGY
2.4 PRODUCT LIFE CYCLE
2.5 DISCUSSION OF CORRELATIVE PAPER OF DATA MINING
3. REDUCTION OF THE AFFINITY SET MODEL
3.1 BASIC CONCEPTS OF AFFINITY SET
3.2 INDIRECT AFFINITY
3.3 OPERATIONS ON AFFINITY SETS
3.4 POTENTIAL APPLICATIONS
4. RESEARCH METHODOLOGY
4.1 FRAME OF RESEARCH
4.2 METHOD OF RESEARCH
4.3 OBJECT OF RESEARCH
4.4 RESULT OF THE QUESTIONNAIRE
4.5 DEFINITION OF THE THREE STAGES ON THE PRODUCT LIFE CYCLE BY AFFINITY SET
5. DESIGN AND ANALYSIS OF THE EXPERIMENT
5.1 NUMERICAL EXAMPLE
5.2 ANALYSIS OF THE RESULT
6. CONCLUSION AND RECOMMENDATION
6.1 CONCLUSION
6.2 RECOMMENDATION

參考文獻


http://www.ortech-engr.com/fuzzy/reservoir.html


Zadeh (1965), Fuzzy Sets, Information and control 8 338-353.


Liao (2002)”Study on application of data mining for pharmaceutical market in Taiwan”


Karavezyris, Marzi (2002), Application of system dynamics and fuzzy logic to forecasting of municipal solid waste, Mathematics and Computers in Simulation, 60, 149–158.

Karnik, Mendel (1999), Applications of type-2 fuzzy logic systems to forecasting of time-series, Information Sciences, 120, 89-111.


Luchetta, Manetti (2003), A real time hydrological forecasting system using a fuzzy clustering approach, Computers & Geosciences, 29, 1111-1117.

Maier, Lence (2001), Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models, Ecological Modelling, 146, 85-96.

Mastorocostas, Bakirtzis (2000), A hybrid fuzzy modeling method for short-term load forecasting, Mathematics and Computers in Simulation,
51, 221–232.


[58] Sisman, Jainc (2004), ANFIS unfolded in time for multivariate time series forecasting, Neurocomputing, 61, 139-168.


