Multiple-target tracking algorithm plays an important role in a radar system. An algorithm used to analyze the multiple maneuvering tracking problems for a radar system is proposed in this thesis. With the developed algorithm, the system will improve the tracking accuracy and reliability of radar surveillance. In this thesis, a computation logic as an adaptive maneuvering compensator is applied to solve both data association and target maneuvering problems simultaneously. A computer simulation algorithm for analyzing the adaptive capability and stability of multiple-target tracking problems is conducted. Computer simulation results indicate that this approach successfully tracks multiple targets in a dynamic system and has good performance.

Keywords: Multiple-target tracking algorithm; adaptive maneuvering compensator; adaptive capability and stability

Table of Contents

- Chapter 1: Introduction
 - 1.1 Introduction
 - 1.2 Radar Applications
 - 1.3 Research Background and Objectives
 - 1.4 Research Methods
 - 1.5 Thesis Framework

- Chapter 2: System Model Definition
 - 2.1 Introduction
 - 2.2 System Model Definition
 - 2.3 Kaman Filter
 - 2.4 Extended Kaman Filter

- Chapter 3: Tracking Architecture and Data Association Techniques
 - 3.1 Introduction
 - 3.2 Data Association Techniques

- Chapter 4: Radar Adaptivity and Stability Analysis
 - 4.1 Introduction
 - 4.2 Adaptivity Theory

- Chapter 5: Computer Simulation Results and Analysis
 - 5.1 Introduction
 - 5.2 Simulation Analysis

- Chapter 6: Conclusion

References

