Simultaneous use of Bacillus natto and Rhizopus oligosporus in the fermentation of soybean

李幸芬、王正仁

ABSTRACT

Japanese natto is made by fermenting intact steamed soybean with Bacillus var. natto, while Indonesian tempeh is made by fermenting dehulled steamed soybean with Rhizopus var. oligosporus. Both products have the same but distinctly respective health-care effectiveness. Although two species have different growth rates, if both can be grown on intact steamed soybean in balanced growth, a new kind of fermented food having both health-care effects may be successfully created. Therefore, this research used intact steamed soybean as substrate, simultaneously inoculating both species, whose inocula were simultaneously or individually cultivated by different media, in the solid-state fermentation, to study the balanced growth conditions for both species, and employed Bacillus natto (Bn) cell number, glucosamine in Rhizopus oligosporus (Ro) mycelia and ammonium nitrogen content as well as the headspace oxygen percentage above fermented soybean as the criteria to evaluate whether product quality can be improved and whether two species can be grown on soybean in balanced growth mode. No matter the tin foil covered on the fermentation plate was punctuated or not, under single Bn fermentation, final cell number could reach 10^9 CFU/g, and better bacterial growth yielded more ammonium nitrogen production; the punctuated group gave 0.46% of ammonium nitrogen, triple higher than that by the unpunctuated group. Based on the change of headspace oxygen percentage, BN cell number and glucosamine content, a determination of the time for both cells to actively grow could be made. For example, no matter whether punctuation is made, in single-culture fermentation, Bn cells started active growth after four hours fermentation, while Ro cells after 6-8 hours. In addition, the former growed faster than the latter. Under single RO fermentation, different inoculum preparation method resulted in different cellular growth rate and lag time; final glucosamine content was between 9.53 and 10.63 mg/g and almost no ammonium nitrogen was produced. Steamed soybean without any inoculation during this same period yielded no ammonium nitrogen, indicating that the ammonium formed during mixed-culture fermentation came mainly from Baccillus natto. Under the operating conditions of 30-minutes autoclaving time and 37oC fermentation, mixed-culture fermentation could led to better balance growth for both species with Bn cell number over 10^9 CFU/g, glucosamine content over 12 mg/g, and 0.38% of ammonium nitrogen in harvested product. Among mixed-culture fermentations by both species but individually prepared by different media, simultaneous inoculation of Bn starters bought from the market and Ro cells prepared by potato dextrose broth helped best balanced growth for both species; after 24 hours fermentation, Bn cells reached 10^9 CFU/g and glucosamine exceeded 12 mg/g with lowest ammonium content (0.29%). And without punctuation of tin foil, the same fermentation would consume all headspace oxygen within 9 hours. If both NB and RO cells were cultivated by the same media and then inoculated together, the one covered by punctuated tin foil and fermented by the mixed inocula prepared by yeast malt broth gave better balanced growth; final Bncells reached 10^9 CFU/g and glucosamine exceeded 12 mg/g with lowest ammonium content (0.13%). And without punctuation of tin foil, the same fermentation would consume all headspace oxygen within 12 hours. Apparently, mixed-culture fermentation could reduce ammonium nitrogen formation and enhance Ro cellular growth. Also, punctuation of tin foil played an important role in final Bn cell number, glucosamine and nitrogen contents; punctuation could enhance growths of both species, but led to more ammonium nitrogen formation.
發酵黃豆實驗方法

3.7 納豆菌數分析方法

3.7.1 納豆菌數分析方法

3.7.2 葡萄糖胺分析方法

3.7.3 氨態氮分析方法

3.7.4 發酵黃豆上之氧氣百分比的分析方法

3.7.5 進口市售納豆產品的品質分析

第四章 結果與討論

4.1 不同熱處理溫度對發酵後納豆中納豆菌數分析的影響

4.2 利用培養液測定納豆菌的生長曲線

4.3 不加菌之煮熟黃豆在戳洞與不戳洞情況下氨氮含量的變化

4.4 蒸煮時間對混合菌發酵黃豆的影響

4.4.1 蒸煮時間對混合菌發酵黃豆中納豆菌生長的影響

4.4.2 蒸煮時間對混合菌發酵產品中天貝菌生長的影響

4.4.3 蒸煮時間對混合菌發酵產品中氨氮產生的影響

4.5 發酵溫度對混合菌發酵黃豆品質的影響

4.5.1 發酵溫度對混合菌發酵黃豆中納豆菌生長的影響

4.5.2 發酵溫度對混合菌發酵黃豆中天貝菌生長的影響

4.5.3 發酵溫度對混合菌發酵黃豆中氨氮含量的影響

4.6 BN YMB培養液或納豆菌粉之單獨發酵對納豆菌生長及氨氮產量的影響

4.7 RO YMB培養液或RO PDA培養液單獨發酵對天貝菌生長及氨氮產量的影響

4.8 在不同接種菌製備方式下同時利用納豆菌和天貝菌發酵黃豆

4.8.1 接種菌製備方式對混合菌發酵黃豆中納豆菌生長的影響

4.8.2 接種菌製備方式對混合菌發酵黃豆中天貝菌生長的影響

4.8.3 接種菌製備方式對混合菌發酵黃豆中氨氮產生的影響

4.9 相同培養基同時或分別培養之雙菌對混合菌發酵的影響

4.9.1 同時及分別培養對發酵黃豆中納豆菌的影響

4.9.2 同時及分別培養對發酵黃豆中天貝菌的影響

4.9.3 同時及分別培養對發酵黃豆中氨氮含量的影響

4.10 錫箔紙有無戳洞對A組與Q組發酵的影響

4.10.1 錫箔紙有無戳洞對A組與Q組發酵中納豆菌生長的影響

4.10.2 錫箔紙有無戳洞對A組與Q組發酵中天貝菌生長的影響

4.10.3 錫箔紙有無戳洞對A組與Q組發酵中氨氮產量的影響

4.11 氧氣對單菌或雙菌發酵的影響

4.11.1 氧氣對單菌發酵的影響

4.11.2 氧氣對雙菌發酵的影響

4.12 市售納豆與實驗條件Q的比較

4.13 單獨納豆和天貝菌與雙菌發酵黃豆之比較

第五章 結論

第六章 參考文獻


