ABSTRACT

The iterative learning control (ILC) is designed to improve the system performance by iterative operations and it is used to modify the contour tracking error of a gantry stage by PD-type learning algorithm. For the contouring control of the gantry stage, there are two categories in the closed-loop control architecture and they are semi-closed loop control and fully-closed loop control. Semi-closed loop control only uses the encoder feedback of the motors and there exists gap problems due to the ball-screw mechanism. Fully-closed loop control uses the position feedback of the stage and it can compensate the gap problem. In this thesis, the iterative learning control (ILC) is integrated with the fully-closed-loop control to achieve precision tracking tasks. Besides, P-type learning and PD-typed learning algorithms are applied to achieve the repetitive tracking tasks and compare the resulting error from the semi-closed loop control. From the experimental results, it can be validated that the PD-type learning control is the best one and eliminate the gap problem successfully.

Keywords : fully-closed loop control, iterative learning control, gantry stage, contour tracking
溫孝元, "離散型反覆式學習控制器之設計與實現", 華梵大學機電工程所碩士論文, 2000。


曾偉誠, "反覆式學習控制於液壓缸位置控制系統之研究", 大葉大學機械所碩士論文, 2001。

黃加恩, "反覆式學習控制應用於氣壓X-Y平台之控制", 大葉大學機械工程所碩士論文, 2004。

李凱笙, "機械手臂之動態順滑控制", 大葉大學機械工程所碩士論文, 2003。

洪世欣, "精密機械進給系統誤差補償", 彰化師範大學機電工程所碩士論文, 2005。

賴國雄, "基於二維系統理論的反覆式學習控制器設計", 成功大學航空太空工程所碩士論文, 2005。